Aromātai
1
Tauwehe
1
Tohaina
Kua tāruatia ki te papatopenga
\frac{5\left(4+\sqrt{11}\right)}{\left(4-\sqrt{11}\right)\left(4+\sqrt{11}\right)}-\frac{4}{\sqrt{11}-\sqrt{7}}-\frac{2}{3+\sqrt{7}}
Whakangāwaritia te tauraro o \frac{5}{4-\sqrt{11}} mā te whakarea i te taurunga me te tauraro ki te 4+\sqrt{11}.
\frac{5\left(4+\sqrt{11}\right)}{4^{2}-\left(\sqrt{11}\right)^{2}}-\frac{4}{\sqrt{11}-\sqrt{7}}-\frac{2}{3+\sqrt{7}}
Whakaarohia te \left(4-\sqrt{11}\right)\left(4+\sqrt{11}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5\left(4+\sqrt{11}\right)}{16-11}-\frac{4}{\sqrt{11}-\sqrt{7}}-\frac{2}{3+\sqrt{7}}
Pūrua 4. Pūrua \sqrt{11}.
\frac{5\left(4+\sqrt{11}\right)}{5}-\frac{4}{\sqrt{11}-\sqrt{7}}-\frac{2}{3+\sqrt{7}}
Tangohia te 11 i te 16, ka 5.
4+\sqrt{11}-\frac{4}{\sqrt{11}-\sqrt{7}}-\frac{2}{3+\sqrt{7}}
Me whakakore te 5 me te 5.
4+\sqrt{11}-\frac{4\left(\sqrt{11}+\sqrt{7}\right)}{\left(\sqrt{11}-\sqrt{7}\right)\left(\sqrt{11}+\sqrt{7}\right)}-\frac{2}{3+\sqrt{7}}
Whakangāwaritia te tauraro o \frac{4}{\sqrt{11}-\sqrt{7}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{11}+\sqrt{7}.
4+\sqrt{11}-\frac{4\left(\sqrt{11}+\sqrt{7}\right)}{\left(\sqrt{11}\right)^{2}-\left(\sqrt{7}\right)^{2}}-\frac{2}{3+\sqrt{7}}
Whakaarohia te \left(\sqrt{11}-\sqrt{7}\right)\left(\sqrt{11}+\sqrt{7}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4+\sqrt{11}-\frac{4\left(\sqrt{11}+\sqrt{7}\right)}{11-7}-\frac{2}{3+\sqrt{7}}
Pūrua \sqrt{11}. Pūrua \sqrt{7}.
4+\sqrt{11}-\frac{4\left(\sqrt{11}+\sqrt{7}\right)}{4}-\frac{2}{3+\sqrt{7}}
Tangohia te 7 i te 11, ka 4.
4+\sqrt{11}-\left(\sqrt{11}+\sqrt{7}\right)-\frac{2}{3+\sqrt{7}}
Me whakakore te 4 me te 4.
4+\sqrt{11}-\sqrt{11}-\sqrt{7}-\frac{2}{3+\sqrt{7}}
Hei kimi i te tauaro o \sqrt{11}+\sqrt{7}, kimihia te tauaro o ia taurangi.
4-\sqrt{7}-\frac{2}{3+\sqrt{7}}
Pahekotia te \sqrt{11} me -\sqrt{11}, ka 0.
4-\sqrt{7}-\frac{2\left(3-\sqrt{7}\right)}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}
Whakangāwaritia te tauraro o \frac{2}{3+\sqrt{7}} mā te whakarea i te taurunga me te tauraro ki te 3-\sqrt{7}.
4-\sqrt{7}-\frac{2\left(3-\sqrt{7}\right)}{3^{2}-\left(\sqrt{7}\right)^{2}}
Whakaarohia te \left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4-\sqrt{7}-\frac{2\left(3-\sqrt{7}\right)}{9-7}
Pūrua 3. Pūrua \sqrt{7}.
4-\sqrt{7}-\frac{2\left(3-\sqrt{7}\right)}{2}
Tangohia te 7 i te 9, ka 2.
4-\sqrt{7}-\left(3-\sqrt{7}\right)
Me whakakore te 2 me te 2.
4-\sqrt{7}-3-\left(-\sqrt{7}\right)
Hei kimi i te tauaro o 3-\sqrt{7}, kimihia te tauaro o ia taurangi.
4-\sqrt{7}-3+\sqrt{7}
Ko te tauaro o -\sqrt{7} ko \sqrt{7}.
1-\sqrt{7}+\sqrt{7}
Tangohia te 3 i te 4, ka 1.
1
Pahekotia te -\sqrt{7} me \sqrt{7}, ka 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}