Aromātai
-\frac{25}{12}\approx -2.083333333
Tauwehe
-\frac{25}{12} = -2\frac{1}{12} = -2.0833333333333335
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{5}{4}\times 2}{-\frac{6}{5}}
Whakawehe \frac{\frac{5}{4}}{-\frac{6}{5}} ki te \frac{1}{2} mā te whakarea \frac{\frac{5}{4}}{-\frac{6}{5}} ki te tau huripoki o \frac{1}{2}.
\frac{\frac{5\times 2}{4}}{-\frac{6}{5}}
Tuhia te \frac{5}{4}\times 2 hei hautanga kotahi.
\frac{\frac{10}{4}}{-\frac{6}{5}}
Whakareatia te 5 ki te 2, ka 10.
\frac{\frac{5}{2}}{-\frac{6}{5}}
Whakahekea te hautanga \frac{10}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{5}{2}\left(-\frac{5}{6}\right)
Whakawehe \frac{5}{2} ki te -\frac{6}{5} mā te whakarea \frac{5}{2} ki te tau huripoki o -\frac{6}{5}.
\frac{5\left(-5\right)}{2\times 6}
Me whakarea te \frac{5}{2} ki te -\frac{5}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-25}{12}
Mahia ngā whakarea i roto i te hautanga \frac{5\left(-5\right)}{2\times 6}.
-\frac{25}{12}
Ka taea te hautanga \frac{-25}{12} te tuhi anō ko -\frac{25}{12} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}