Tīpoka ki ngā ihirangi matua
Whakaoti mō y (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{5}{3}x-3=7y_{7}y+\frac{7}{3}
Tāpirihia te -\frac{8}{3} ki te 5, ka \frac{7}{3}.
7y_{7}y+\frac{7}{3}=\frac{5}{3}x-3
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
7y_{7}y=\frac{5}{3}x-3-\frac{7}{3}
Tangohia te \frac{7}{3} mai i ngā taha e rua.
7y_{7}y=\frac{5}{3}x-\frac{16}{3}
Tangohia te \frac{7}{3} i te -3, ka -\frac{16}{3}.
7y_{7}y=\frac{5x-16}{3}
He hanga arowhānui tō te whārite.
\frac{7y_{7}y}{7y_{7}}=\frac{5x-16}{3\times 7y_{7}}
Whakawehea ngā taha e rua ki te 7y_{7}.
y=\frac{5x-16}{3\times 7y_{7}}
Mā te whakawehe ki te 7y_{7} ka wetekia te whakareanga ki te 7y_{7}.
y=\frac{5x-16}{21y_{7}}
Whakawehe \frac{-16+5x}{3} ki te 7y_{7}.
\frac{5}{3}x-3=7y_{7}y+\frac{7}{3}
Tāpirihia te -\frac{8}{3} ki te 5, ka \frac{7}{3}.
\frac{5}{3}x=7y_{7}y+\frac{7}{3}+3
Me tāpiri te 3 ki ngā taha e rua.
\frac{5}{3}x=7y_{7}y+\frac{16}{3}
Tāpirihia te \frac{7}{3} ki te 3, ka \frac{16}{3}.
\frac{5}{3}x=7yy_{7}+\frac{16}{3}
He hanga arowhānui tō te whārite.
\frac{\frac{5}{3}x}{\frac{5}{3}}=\frac{7yy_{7}+\frac{16}{3}}{\frac{5}{3}}
Whakawehea ngā taha e rua o te whārite ki te \frac{5}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{7yy_{7}+\frac{16}{3}}{\frac{5}{3}}
Mā te whakawehe ki te \frac{5}{3} ka wetekia te whakareanga ki te \frac{5}{3}.
x=\frac{21yy_{7}+16}{5}
Whakawehe 7y_{7}y+\frac{16}{3} ki te \frac{5}{3} mā te whakarea 7y_{7}y+\frac{16}{3} ki te tau huripoki o \frac{5}{3}.
\frac{5}{3}x-3=7y_{7}y+\frac{7}{3}
Tāpirihia te -\frac{8}{3} ki te 5, ka \frac{7}{3}.
7y_{7}y+\frac{7}{3}=\frac{5}{3}x-3
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
7y_{7}y=\frac{5}{3}x-3-\frac{7}{3}
Tangohia te \frac{7}{3} mai i ngā taha e rua.
7y_{7}y=\frac{5}{3}x-\frac{16}{3}
Tangohia te \frac{7}{3} i te -3, ka -\frac{16}{3}.
7y_{7}y=\frac{5x-16}{3}
He hanga arowhānui tō te whārite.
\frac{7y_{7}y}{7y_{7}}=\frac{5x-16}{3\times 7y_{7}}
Whakawehea ngā taha e rua ki te 7y_{7}.
y=\frac{5x-16}{3\times 7y_{7}}
Mā te whakawehe ki te 7y_{7} ka wetekia te whakareanga ki te 7y_{7}.
y=\frac{5x-16}{21y_{7}}
Whakawehe \frac{5x-16}{3} ki te 7y_{7}.