Whakaoti mō y (complex solution)
\left\{\begin{matrix}y=-\frac{16-5x}{21y_{7}}\text{, }&y_{7}\neq 0\\y\in \mathrm{C}\text{, }&x=\frac{16}{5}\text{ and }y_{7}=0\end{matrix}\right.
Whakaoti mō x
x=\frac{21yy_{7}+16}{5}
Whakaoti mō y
\left\{\begin{matrix}y=-\frac{16-5x}{21y_{7}}\text{, }&y_{7}\neq 0\\y\in \mathrm{R}\text{, }&x=\frac{16}{5}\text{ and }y_{7}=0\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{5}{3}x-3=7y_{7}y+\frac{7}{3}
Tāpirihia te -\frac{8}{3} ki te 5, ka \frac{7}{3}.
7y_{7}y+\frac{7}{3}=\frac{5}{3}x-3
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
7y_{7}y=\frac{5}{3}x-3-\frac{7}{3}
Tangohia te \frac{7}{3} mai i ngā taha e rua.
7y_{7}y=\frac{5}{3}x-\frac{16}{3}
Tangohia te \frac{7}{3} i te -3, ka -\frac{16}{3}.
7y_{7}y=\frac{5x-16}{3}
He hanga arowhānui tō te whārite.
\frac{7y_{7}y}{7y_{7}}=\frac{5x-16}{3\times 7y_{7}}
Whakawehea ngā taha e rua ki te 7y_{7}.
y=\frac{5x-16}{3\times 7y_{7}}
Mā te whakawehe ki te 7y_{7} ka wetekia te whakareanga ki te 7y_{7}.
y=\frac{5x-16}{21y_{7}}
Whakawehe \frac{-16+5x}{3} ki te 7y_{7}.
\frac{5}{3}x-3=7y_{7}y+\frac{7}{3}
Tāpirihia te -\frac{8}{3} ki te 5, ka \frac{7}{3}.
\frac{5}{3}x=7y_{7}y+\frac{7}{3}+3
Me tāpiri te 3 ki ngā taha e rua.
\frac{5}{3}x=7y_{7}y+\frac{16}{3}
Tāpirihia te \frac{7}{3} ki te 3, ka \frac{16}{3}.
\frac{5}{3}x=7yy_{7}+\frac{16}{3}
He hanga arowhānui tō te whārite.
\frac{\frac{5}{3}x}{\frac{5}{3}}=\frac{7yy_{7}+\frac{16}{3}}{\frac{5}{3}}
Whakawehea ngā taha e rua o te whārite ki te \frac{5}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{7yy_{7}+\frac{16}{3}}{\frac{5}{3}}
Mā te whakawehe ki te \frac{5}{3} ka wetekia te whakareanga ki te \frac{5}{3}.
x=\frac{21yy_{7}+16}{5}
Whakawehe 7y_{7}y+\frac{16}{3} ki te \frac{5}{3} mā te whakarea 7y_{7}y+\frac{16}{3} ki te tau huripoki o \frac{5}{3}.
\frac{5}{3}x-3=7y_{7}y+\frac{7}{3}
Tāpirihia te -\frac{8}{3} ki te 5, ka \frac{7}{3}.
7y_{7}y+\frac{7}{3}=\frac{5}{3}x-3
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
7y_{7}y=\frac{5}{3}x-3-\frac{7}{3}
Tangohia te \frac{7}{3} mai i ngā taha e rua.
7y_{7}y=\frac{5}{3}x-\frac{16}{3}
Tangohia te \frac{7}{3} i te -3, ka -\frac{16}{3}.
7y_{7}y=\frac{5x-16}{3}
He hanga arowhānui tō te whārite.
\frac{7y_{7}y}{7y_{7}}=\frac{5x-16}{3\times 7y_{7}}
Whakawehea ngā taha e rua ki te 7y_{7}.
y=\frac{5x-16}{3\times 7y_{7}}
Mā te whakawehe ki te 7y_{7} ka wetekia te whakareanga ki te 7y_{7}.
y=\frac{5x-16}{21y_{7}}
Whakawehe \frac{5x-16}{3} ki te 7y_{7}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}