Whakaoti mō x
x = -\frac{6}{5} = -1\frac{1}{5} = -1.2
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
x\left(\frac{5}{3}x+2\right)=0
Tauwehea te x.
x=0 x=-\frac{6}{5}
Hei kimi otinga whārite, me whakaoti te x=0 me te \frac{5x}{3}+2=0.
\frac{5}{3}x^{2}+2x=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-2±\sqrt{2^{2}}}{2\times \frac{5}{3}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{5}{3} mō a, 2 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±2}{2\times \frac{5}{3}}
Tuhia te pūtakerua o te 2^{2}.
x=\frac{-2±2}{\frac{10}{3}}
Whakareatia 2 ki te \frac{5}{3}.
x=\frac{0}{\frac{10}{3}}
Nā, me whakaoti te whārite x=\frac{-2±2}{\frac{10}{3}} ina he tāpiri te ±. Tāpiri -2 ki te 2.
x=0
Whakawehe 0 ki te \frac{10}{3} mā te whakarea 0 ki te tau huripoki o \frac{10}{3}.
x=-\frac{4}{\frac{10}{3}}
Nā, me whakaoti te whārite x=\frac{-2±2}{\frac{10}{3}} ina he tango te ±. Tango 2 mai i -2.
x=-\frac{6}{5}
Whakawehe -4 ki te \frac{10}{3} mā te whakarea -4 ki te tau huripoki o \frac{10}{3}.
x=0 x=-\frac{6}{5}
Kua oti te whārite te whakatau.
\frac{5}{3}x^{2}+2x=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{\frac{5}{3}x^{2}+2x}{\frac{5}{3}}=\frac{0}{\frac{5}{3}}
Whakawehea ngā taha e rua o te whārite ki te \frac{5}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x^{2}+\frac{2}{\frac{5}{3}}x=\frac{0}{\frac{5}{3}}
Mā te whakawehe ki te \frac{5}{3} ka wetekia te whakareanga ki te \frac{5}{3}.
x^{2}+\frac{6}{5}x=\frac{0}{\frac{5}{3}}
Whakawehe 2 ki te \frac{5}{3} mā te whakarea 2 ki te tau huripoki o \frac{5}{3}.
x^{2}+\frac{6}{5}x=0
Whakawehe 0 ki te \frac{5}{3} mā te whakarea 0 ki te tau huripoki o \frac{5}{3}.
x^{2}+\frac{6}{5}x+\left(\frac{3}{5}\right)^{2}=\left(\frac{3}{5}\right)^{2}
Whakawehea te \frac{6}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{5}. Nā, tāpiria te pūrua o te \frac{3}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{6}{5}x+\frac{9}{25}=\frac{9}{25}
Pūruatia \frac{3}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x+\frac{3}{5}\right)^{2}=\frac{9}{25}
Tauwehea x^{2}+\frac{6}{5}x+\frac{9}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{5}\right)^{2}}=\sqrt{\frac{9}{25}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{5}=\frac{3}{5} x+\frac{3}{5}=-\frac{3}{5}
Whakarūnātia.
x=0 x=-\frac{6}{5}
Me tango \frac{3}{5} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}