Aromātai
4
Tauwehe
2^{2}
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac { 5 } { 3 } + \frac { 3 } { 4 } + \frac { 19 } { 12 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{20}{12}+\frac{9}{12}+\frac{19}{12}
Ko te maha noa iti rawa atu o 3 me 4 ko 12. Me tahuri \frac{5}{3} me \frac{3}{4} ki te hautau me te tautūnga 12.
\frac{20+9}{12}+\frac{19}{12}
Tā te mea he rite te tauraro o \frac{20}{12} me \frac{9}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{29}{12}+\frac{19}{12}
Tāpirihia te 20 ki te 9, ka 29.
\frac{29+19}{12}
Tā te mea he rite te tauraro o \frac{29}{12} me \frac{19}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{48}{12}
Tāpirihia te 29 ki te 19, ka 48.
4
Whakawehea te 48 ki te 12, kia riro ko 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}