Aromātai
\frac{5}{7}\approx 0.714285714
Tauwehe
\frac{5}{7} = 0.7142857142857143
Tohaina
Kua tāruatia ki te papatopenga
\frac{5}{24}\times \frac{7+5}{7}+\frac{2}{4}\times \frac{5}{7}
Whakareatia te 1 ki te 7, ka 7.
\frac{5}{24}\times \frac{12}{7}+\frac{2}{4}\times \frac{5}{7}
Tāpirihia te 7 ki te 5, ka 12.
\frac{5\times 12}{24\times 7}+\frac{2}{4}\times \frac{5}{7}
Me whakarea te \frac{5}{24} ki te \frac{12}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{60}{168}+\frac{2}{4}\times \frac{5}{7}
Mahia ngā whakarea i roto i te hautanga \frac{5\times 12}{24\times 7}.
\frac{5}{14}+\frac{2}{4}\times \frac{5}{7}
Whakahekea te hautanga \frac{60}{168} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
\frac{5}{14}+\frac{1}{2}\times \frac{5}{7}
Whakahekea te hautanga \frac{2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{5}{14}+\frac{1\times 5}{2\times 7}
Me whakarea te \frac{1}{2} ki te \frac{5}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{5}{14}+\frac{5}{14}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 5}{2\times 7}.
\frac{5+5}{14}
Tā te mea he rite te tauraro o \frac{5}{14} me \frac{5}{14}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{10}{14}
Tāpirihia te 5 ki te 5, ka 10.
\frac{5}{7}
Whakahekea te hautanga \frac{10}{14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}