Aromātai
\frac{12473}{18480}\approx 0.674945887
Tauwehe
\frac{12473}{2 ^ {4} \cdot 3 \cdot 5 \cdot 7 \cdot 11} = 0.6749458874458875
Tohaina
Kua tāruatia ki te papatopenga
\frac{25}{120}+\frac{14}{120}+\frac{9}{40}+\frac{11}{210}+\frac{15}{504}+\frac{17}{720}+\frac{19}{990}
Ko te maha noa iti rawa atu o 24 me 60 ko 120. Me tahuri \frac{5}{24} me \frac{7}{60} ki te hautau me te tautūnga 120.
\frac{25+14}{120}+\frac{9}{40}+\frac{11}{210}+\frac{15}{504}+\frac{17}{720}+\frac{19}{990}
Tā te mea he rite te tauraro o \frac{25}{120} me \frac{14}{120}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{39}{120}+\frac{9}{40}+\frac{11}{210}+\frac{15}{504}+\frac{17}{720}+\frac{19}{990}
Tāpirihia te 25 ki te 14, ka 39.
\frac{13}{40}+\frac{9}{40}+\frac{11}{210}+\frac{15}{504}+\frac{17}{720}+\frac{19}{990}
Whakahekea te hautanga \frac{39}{120} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{13+9}{40}+\frac{11}{210}+\frac{15}{504}+\frac{17}{720}+\frac{19}{990}
Tā te mea he rite te tauraro o \frac{13}{40} me \frac{9}{40}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{22}{40}+\frac{11}{210}+\frac{15}{504}+\frac{17}{720}+\frac{19}{990}
Tāpirihia te 13 ki te 9, ka 22.
\frac{11}{20}+\frac{11}{210}+\frac{15}{504}+\frac{17}{720}+\frac{19}{990}
Whakahekea te hautanga \frac{22}{40} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{231}{420}+\frac{22}{420}+\frac{15}{504}+\frac{17}{720}+\frac{19}{990}
Ko te maha noa iti rawa atu o 20 me 210 ko 420. Me tahuri \frac{11}{20} me \frac{11}{210} ki te hautau me te tautūnga 420.
\frac{231+22}{420}+\frac{15}{504}+\frac{17}{720}+\frac{19}{990}
Tā te mea he rite te tauraro o \frac{231}{420} me \frac{22}{420}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{253}{420}+\frac{15}{504}+\frac{17}{720}+\frac{19}{990}
Tāpirihia te 231 ki te 22, ka 253.
\frac{253}{420}+\frac{5}{168}+\frac{17}{720}+\frac{19}{990}
Whakahekea te hautanga \frac{15}{504} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{506}{840}+\frac{25}{840}+\frac{17}{720}+\frac{19}{990}
Ko te maha noa iti rawa atu o 420 me 168 ko 840. Me tahuri \frac{253}{420} me \frac{5}{168} ki te hautau me te tautūnga 840.
\frac{506+25}{840}+\frac{17}{720}+\frac{19}{990}
Tā te mea he rite te tauraro o \frac{506}{840} me \frac{25}{840}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{531}{840}+\frac{17}{720}+\frac{19}{990}
Tāpirihia te 506 ki te 25, ka 531.
\frac{177}{280}+\frac{17}{720}+\frac{19}{990}
Whakahekea te hautanga \frac{531}{840} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{3186}{5040}+\frac{119}{5040}+\frac{19}{990}
Ko te maha noa iti rawa atu o 280 me 720 ko 5040. Me tahuri \frac{177}{280} me \frac{17}{720} ki te hautau me te tautūnga 5040.
\frac{3186+119}{5040}+\frac{19}{990}
Tā te mea he rite te tauraro o \frac{3186}{5040} me \frac{119}{5040}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3305}{5040}+\frac{19}{990}
Tāpirihia te 3186 ki te 119, ka 3305.
\frac{661}{1008}+\frac{19}{990}
Whakahekea te hautanga \frac{3305}{5040} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{36355}{55440}+\frac{1064}{55440}
Ko te maha noa iti rawa atu o 1008 me 990 ko 55440. Me tahuri \frac{661}{1008} me \frac{19}{990} ki te hautau me te tautūnga 55440.
\frac{36355+1064}{55440}
Tā te mea he rite te tauraro o \frac{36355}{55440} me \frac{1064}{55440}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{37419}{55440}
Tāpirihia te 36355 ki te 1064, ka 37419.
\frac{12473}{18480}
Whakahekea te hautanga \frac{37419}{55440} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}