Whakaoti mō x
x=36
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x-6\right)\times 5-\left(2x+1\right)\times 2=4
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -\frac{1}{2},6 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-6\right)\left(2x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2x+1,x-6,2x^{2}-11x-6.
5x-30-\left(2x+1\right)\times 2=4
Whakamahia te āhuatanga tohatoha hei whakarea te x-6 ki te 5.
5x-30-\left(4x+2\right)=4
Whakamahia te āhuatanga tohatoha hei whakarea te 2x+1 ki te 2.
5x-30-4x-2=4
Hei kimi i te tauaro o 4x+2, kimihia te tauaro o ia taurangi.
x-30-2=4
Pahekotia te 5x me -4x, ka x.
x-32=4
Tangohia te 2 i te -30, ka -32.
x=4+32
Me tāpiri te 32 ki ngā taha e rua.
x=36
Tāpirihia te 4 ki te 32, ka 36.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}