Aromātai
ik+\left(2+i\right)
Tohaina
Kua tāruatia ki te papatopenga
\frac{5\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}+ki
Me whakarea te taurunga me te tauraro o \frac{5}{2-i} ki te haumi hiato o te tauraro, 2+i.
\frac{5\left(2+i\right)}{2^{2}-i^{2}}+ki
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5\left(2+i\right)}{5}+ki
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{5\times 2+5i}{5}+ki
Whakareatia 5 ki te 2+i.
\frac{10+5i}{5}+ki
Mahia ngā whakarea i roto o 5\times 2+5i.
2+i+ki
Whakawehea te 10+5i ki te 5, kia riro ko 2+i.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}