Whakaoti mō x
x=\frac{\sqrt{85}}{5}-1\approx 0.843908891
x=-\frac{\sqrt{85}}{5}-1\approx -2.843908891
Graph
Tohaina
Kua tāruatia ki te papatopenga
2\left(x-2\right)\left(x+2\right)\times \frac{5}{2}+\left(2x+4\right)\times 5=2\times 6
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2\left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2,x-2,x^{2}-4.
\left(2x-4\right)\left(x+2\right)\times \frac{5}{2}+\left(2x+4\right)\times 5=2\times 6
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-2.
\left(2x^{2}-8\right)\times \frac{5}{2}+\left(2x+4\right)\times 5=2\times 6
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x-4 ki te x+2 ka whakakotahi i ngā kupu rite.
5x^{2}-20+\left(2x+4\right)\times 5=2\times 6
Whakamahia te āhuatanga tohatoha hei whakarea te 2x^{2}-8 ki te \frac{5}{2}.
5x^{2}-20+10x+20=2\times 6
Whakamahia te āhuatanga tohatoha hei whakarea te 2x+4 ki te 5.
5x^{2}+10x=2\times 6
Tāpirihia te -20 ki te 20, ka 0.
5x^{2}+10x=12
Whakareatia te 2 ki te 6, ka 12.
5x^{2}+10x-12=0
Tangohia te 12 mai i ngā taha e rua.
x=\frac{-10±\sqrt{10^{2}-4\times 5\left(-12\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, 10 mō b, me -12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 5\left(-12\right)}}{2\times 5}
Pūrua 10.
x=\frac{-10±\sqrt{100-20\left(-12\right)}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-10±\sqrt{100+240}}{2\times 5}
Whakareatia -20 ki te -12.
x=\frac{-10±\sqrt{340}}{2\times 5}
Tāpiri 100 ki te 240.
x=\frac{-10±2\sqrt{85}}{2\times 5}
Tuhia te pūtakerua o te 340.
x=\frac{-10±2\sqrt{85}}{10}
Whakareatia 2 ki te 5.
x=\frac{2\sqrt{85}-10}{10}
Nā, me whakaoti te whārite x=\frac{-10±2\sqrt{85}}{10} ina he tāpiri te ±. Tāpiri -10 ki te 2\sqrt{85}.
x=\frac{\sqrt{85}}{5}-1
Whakawehe -10+2\sqrt{85} ki te 10.
x=\frac{-2\sqrt{85}-10}{10}
Nā, me whakaoti te whārite x=\frac{-10±2\sqrt{85}}{10} ina he tango te ±. Tango 2\sqrt{85} mai i -10.
x=-\frac{\sqrt{85}}{5}-1
Whakawehe -10-2\sqrt{85} ki te 10.
x=\frac{\sqrt{85}}{5}-1 x=-\frac{\sqrt{85}}{5}-1
Kua oti te whārite te whakatau.
2\left(x-2\right)\left(x+2\right)\times \frac{5}{2}+\left(2x+4\right)\times 5=2\times 6
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2\left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2,x-2,x^{2}-4.
\left(2x-4\right)\left(x+2\right)\times \frac{5}{2}+\left(2x+4\right)\times 5=2\times 6
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-2.
\left(2x^{2}-8\right)\times \frac{5}{2}+\left(2x+4\right)\times 5=2\times 6
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x-4 ki te x+2 ka whakakotahi i ngā kupu rite.
5x^{2}-20+\left(2x+4\right)\times 5=2\times 6
Whakamahia te āhuatanga tohatoha hei whakarea te 2x^{2}-8 ki te \frac{5}{2}.
5x^{2}-20+10x+20=2\times 6
Whakamahia te āhuatanga tohatoha hei whakarea te 2x+4 ki te 5.
5x^{2}+10x=2\times 6
Tāpirihia te -20 ki te 20, ka 0.
5x^{2}+10x=12
Whakareatia te 2 ki te 6, ka 12.
\frac{5x^{2}+10x}{5}=\frac{12}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\frac{10}{5}x=\frac{12}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}+2x=\frac{12}{5}
Whakawehe 10 ki te 5.
x^{2}+2x+1^{2}=\frac{12}{5}+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=\frac{12}{5}+1
Pūrua 1.
x^{2}+2x+1=\frac{17}{5}
Tāpiri \frac{12}{5} ki te 1.
\left(x+1\right)^{2}=\frac{17}{5}
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{17}{5}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=\frac{\sqrt{85}}{5} x+1=-\frac{\sqrt{85}}{5}
Whakarūnātia.
x=\frac{\sqrt{85}}{5}-1 x=-\frac{\sqrt{85}}{5}-1
Me tango 1 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}