Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{5\left(2\sqrt{7}+2\sqrt{5}\right)}{\left(2\sqrt{7}-2\sqrt{5}\right)\left(2\sqrt{7}+2\sqrt{5}\right)}
Whakangāwaritia te tauraro o \frac{5}{2\sqrt{7}-2\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te 2\sqrt{7}+2\sqrt{5}.
\frac{5\left(2\sqrt{7}+2\sqrt{5}\right)}{\left(2\sqrt{7}\right)^{2}-\left(-2\sqrt{5}\right)^{2}}
Whakaarohia te \left(2\sqrt{7}-2\sqrt{5}\right)\left(2\sqrt{7}+2\sqrt{5}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5\left(2\sqrt{7}+2\sqrt{5}\right)}{2^{2}\left(\sqrt{7}\right)^{2}-\left(-2\sqrt{5}\right)^{2}}
Whakarohaina te \left(2\sqrt{7}\right)^{2}.
\frac{5\left(2\sqrt{7}+2\sqrt{5}\right)}{4\left(\sqrt{7}\right)^{2}-\left(-2\sqrt{5}\right)^{2}}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{5\left(2\sqrt{7}+2\sqrt{5}\right)}{4\times 7-\left(-2\sqrt{5}\right)^{2}}
Ko te pūrua o \sqrt{7} ko 7.
\frac{5\left(2\sqrt{7}+2\sqrt{5}\right)}{28-\left(-2\sqrt{5}\right)^{2}}
Whakareatia te 4 ki te 7, ka 28.
\frac{5\left(2\sqrt{7}+2\sqrt{5}\right)}{28-\left(-2\right)^{2}\left(\sqrt{5}\right)^{2}}
Whakarohaina te \left(-2\sqrt{5}\right)^{2}.
\frac{5\left(2\sqrt{7}+2\sqrt{5}\right)}{28-4\left(\sqrt{5}\right)^{2}}
Tātaihia te -2 mā te pū o 2, kia riro ko 4.
\frac{5\left(2\sqrt{7}+2\sqrt{5}\right)}{28-4\times 5}
Ko te pūrua o \sqrt{5} ko 5.
\frac{5\left(2\sqrt{7}+2\sqrt{5}\right)}{28-20}
Whakareatia te 4 ki te 5, ka 20.
\frac{5\left(2\sqrt{7}+2\sqrt{5}\right)}{8}
Tangohia te 20 i te 28, ka 8.
\frac{10\sqrt{7}+10\sqrt{5}}{8}
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te 2\sqrt{7}+2\sqrt{5}.