Aromātai
-\frac{2}{3}\approx -0.666666667
Tauwehe
-\frac{2}{3} = -0.6666666666666666
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac { 5 } { 12 } - 2 - \frac { 5 } { 4 } + \frac { 13 } { 6 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{5}{12}-\frac{24}{12}-\frac{5}{4}+\frac{13}{6}
Me tahuri te 2 ki te hautau \frac{24}{12}.
\frac{5-24}{12}-\frac{5}{4}+\frac{13}{6}
Tā te mea he rite te tauraro o \frac{5}{12} me \frac{24}{12}, me tango rāua mā te tango i ō raua taurunga.
-\frac{19}{12}-\frac{5}{4}+\frac{13}{6}
Tangohia te 24 i te 5, ka -19.
-\frac{19}{12}-\frac{15}{12}+\frac{13}{6}
Ko te maha noa iti rawa atu o 12 me 4 ko 12. Me tahuri -\frac{19}{12} me \frac{5}{4} ki te hautau me te tautūnga 12.
\frac{-19-15}{12}+\frac{13}{6}
Tā te mea he rite te tauraro o -\frac{19}{12} me \frac{15}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{-34}{12}+\frac{13}{6}
Tangohia te 15 i te -19, ka -34.
-\frac{17}{6}+\frac{13}{6}
Whakahekea te hautanga \frac{-34}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{-17+13}{6}
Tā te mea he rite te tauraro o -\frac{17}{6} me \frac{13}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-4}{6}
Tāpirihia te -17 ki te 13, ka -4.
-\frac{2}{3}
Whakahekea te hautanga \frac{-4}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}