\frac { 5 } { 12 } \text { to get } 2 \frac { 3 } { 8 }
Aromātai
\frac{95egot^{2}}{96}
Whakaroha
\frac{95egot^{2}}{96}
Tohaina
Kua tāruatia ki te papatopenga
\frac{5}{12}t^{2}oge\times \frac{2\times 8+3}{8}
Whakareatia te t ki te t, ka t^{2}.
\frac{5}{12}t^{2}oge\times \frac{16+3}{8}
Whakareatia te 2 ki te 8, ka 16.
\frac{5}{12}t^{2}oge\times \frac{19}{8}
Tāpirihia te 16 ki te 3, ka 19.
\frac{5\times 19}{12\times 8}t^{2}oge
Me whakarea te \frac{5}{12} ki te \frac{19}{8} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{95}{96}t^{2}oge
Mahia ngā whakarea i roto i te hautanga \frac{5\times 19}{12\times 8}.
\frac{5}{12}t^{2}oge\times \frac{2\times 8+3}{8}
Whakareatia te t ki te t, ka t^{2}.
\frac{5}{12}t^{2}oge\times \frac{16+3}{8}
Whakareatia te 2 ki te 8, ka 16.
\frac{5}{12}t^{2}oge\times \frac{19}{8}
Tāpirihia te 16 ki te 3, ka 19.
\frac{5\times 19}{12\times 8}t^{2}oge
Me whakarea te \frac{5}{12} ki te \frac{19}{8} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{95}{96}t^{2}oge
Mahia ngā whakarea i roto i te hautanga \frac{5\times 19}{12\times 8}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}