Aromātai
\frac{7X}{200}
Kimi Pārōnaki e ai ki X
\frac{7}{200} = 0.035
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{20}X\times \frac{7}{10}
Whakahekea te hautanga \frac{5}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{1\times 7}{20\times 10}X
Me whakarea te \frac{1}{20} ki te \frac{7}{10} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{7}{200}X
Mahia ngā whakarea i roto i te hautanga \frac{1\times 7}{20\times 10}.
\frac{\mathrm{d}}{\mathrm{d}X}(\frac{1}{20}X\times \frac{7}{10})
Whakahekea te hautanga \frac{5}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{\mathrm{d}}{\mathrm{d}X}(\frac{1\times 7}{20\times 10}X)
Me whakarea te \frac{1}{20} ki te \frac{7}{10} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\mathrm{d}}{\mathrm{d}X}(\frac{7}{200}X)
Mahia ngā whakarea i roto i te hautanga \frac{1\times 7}{20\times 10}.
\frac{7}{200}X^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
\frac{7}{200}X^{0}
Tango 1 mai i 1.
\frac{7}{200}\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{7}{200}
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}