Aromātai
\frac{25-15\sqrt{3}}{2}\approx -0.490381057
Tohaina
Kua tāruatia ki te papatopenga
\frac{5\left(-5+3\sqrt{3}\right)}{\left(-5-3\sqrt{3}\right)\left(-5+3\sqrt{3}\right)}
Whakangāwaritia te tauraro o \frac{5}{-5-3\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te -5+3\sqrt{3}.
\frac{5\left(-5+3\sqrt{3}\right)}{\left(-5\right)^{2}-\left(-3\sqrt{3}\right)^{2}}
Whakaarohia te \left(-5-3\sqrt{3}\right)\left(-5+3\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5\left(-5+3\sqrt{3}\right)}{25-\left(-3\sqrt{3}\right)^{2}}
Tātaihia te -5 mā te pū o 2, kia riro ko 25.
\frac{5\left(-5+3\sqrt{3}\right)}{25-\left(-3\right)^{2}\left(\sqrt{3}\right)^{2}}
Whakarohaina te \left(-3\sqrt{3}\right)^{2}.
\frac{5\left(-5+3\sqrt{3}\right)}{25-9\left(\sqrt{3}\right)^{2}}
Tātaihia te -3 mā te pū o 2, kia riro ko 9.
\frac{5\left(-5+3\sqrt{3}\right)}{25-9\times 3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{5\left(-5+3\sqrt{3}\right)}{25-27}
Whakareatia te 9 ki te 3, ka 27.
\frac{5\left(-5+3\sqrt{3}\right)}{-2}
Tangohia te 27 i te 25, ka -2.
\frac{-25+15\sqrt{3}}{-2}
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te -5+3\sqrt{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}