Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{5\left(-5+3\sqrt{3}\right)}{\left(-5-3\sqrt{3}\right)\left(-5+3\sqrt{3}\right)}
Whakangāwaritia te tauraro o \frac{5}{-5-3\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te -5+3\sqrt{3}.
\frac{5\left(-5+3\sqrt{3}\right)}{\left(-5\right)^{2}-\left(-3\sqrt{3}\right)^{2}}
Whakaarohia te \left(-5-3\sqrt{3}\right)\left(-5+3\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5\left(-5+3\sqrt{3}\right)}{25-\left(-3\sqrt{3}\right)^{2}}
Tātaihia te -5 mā te pū o 2, kia riro ko 25.
\frac{5\left(-5+3\sqrt{3}\right)}{25-\left(-3\right)^{2}\left(\sqrt{3}\right)^{2}}
Whakarohaina te \left(-3\sqrt{3}\right)^{2}.
\frac{5\left(-5+3\sqrt{3}\right)}{25-9\left(\sqrt{3}\right)^{2}}
Tātaihia te -3 mā te pū o 2, kia riro ko 9.
\frac{5\left(-5+3\sqrt{3}\right)}{25-9\times 3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{5\left(-5+3\sqrt{3}\right)}{25-27}
Whakareatia te 9 ki te 3, ka 27.
\frac{5\left(-5+3\sqrt{3}\right)}{-2}
Tangohia te 27 i te 25, ka -2.
\frac{-25+15\sqrt{3}}{-2}
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te -5+3\sqrt{3}.