Aromātai
\frac{5x}{2x+7}
Kimi Pārōnaki e ai ki x
\frac{35}{\left(2x+7\right)^{2}}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{5}{\frac{7}{x}+\frac{2x}{x}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 2 ki te \frac{x}{x}.
\frac{5}{\frac{7+2x}{x}}
Tā te mea he rite te tauraro o \frac{7}{x} me \frac{2x}{x}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{5x}{7+2x}
Whakawehe 5 ki te \frac{7+2x}{x} mā te whakarea 5 ki te tau huripoki o \frac{7+2x}{x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5}{\frac{7}{x}+\frac{2x}{x}})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 2 ki te \frac{x}{x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5}{\frac{7+2x}{x}})
Tā te mea he rite te tauraro o \frac{7}{x} me \frac{2x}{x}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x}{7+2x})
Whakawehe 5 ki te \frac{7+2x}{x} mā te whakarea 5 ki te tau huripoki o \frac{7+2x}{x}.
\frac{\left(2x^{1}+7\right)\frac{\mathrm{d}}{\mathrm{d}x}(5x^{1})-5x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1}+7)}{\left(2x^{1}+7\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(2x^{1}+7\right)\times 5x^{1-1}-5x^{1}\times 2x^{1-1}}{\left(2x^{1}+7\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(2x^{1}+7\right)\times 5x^{0}-5x^{1}\times 2x^{0}}{\left(2x^{1}+7\right)^{2}}
Mahia ngā tātaitanga.
\frac{2x^{1}\times 5x^{0}+7\times 5x^{0}-5x^{1}\times 2x^{0}}{\left(2x^{1}+7\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{2\times 5x^{1}+7\times 5x^{0}-5\times 2x^{1}}{\left(2x^{1}+7\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{10x^{1}+35x^{0}-10x^{1}}{\left(2x^{1}+7\right)^{2}}
Mahia ngā tātaitanga.
\frac{\left(10-10\right)x^{1}+35x^{0}}{\left(2x^{1}+7\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{35x^{0}}{\left(2x^{1}+7\right)^{2}}
Tango 10 mai i 10.
\frac{35x^{0}}{\left(2x+7\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{35\times 1}{\left(2x+7\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{35}{\left(2x+7\right)^{2}}
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}