Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{5\sqrt{21}}{\sqrt{28}}
Hei whakarea \sqrt{7} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
\frac{5\sqrt{21}}{2\sqrt{7}}
Tauwehea te 28=2^{2}\times 7. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 7} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{7}. Tuhia te pūtakerua o te 2^{2}.
\frac{5\sqrt{21}\sqrt{7}}{2\left(\sqrt{7}\right)^{2}}
Whakangāwaritia te tauraro o \frac{5\sqrt{21}}{2\sqrt{7}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{7}.
\frac{5\sqrt{21}\sqrt{7}}{2\times 7}
Ko te pūrua o \sqrt{7} ko 7.
\frac{5\sqrt{7}\sqrt{3}\sqrt{7}}{2\times 7}
Tauwehea te 21=7\times 3. Tuhia anō te pūtake rua o te hua \sqrt{7\times 3} hei hua o ngā pūtake rua \sqrt{7}\sqrt{3}.
\frac{5\times 7\sqrt{3}}{2\times 7}
Whakareatia te \sqrt{7} ki te \sqrt{7}, ka 7.
\frac{5\times 7\sqrt{3}}{14}
Whakareatia te 2 ki te 7, ka 14.
\frac{35\sqrt{3}}{14}
Whakareatia te 5 ki te 7, ka 35.
\frac{5}{2}\sqrt{3}
Whakawehea te 35\sqrt{3} ki te 14, kia riro ko \frac{5}{2}\sqrt{3}.