Aromātai
\frac{5\sqrt{3}}{2}\approx 4.330127019
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac { 5 \sqrt { 7 } \times \sqrt { 3 } } { \sqrt { 28 } }
Tohaina
Kua tāruatia ki te papatopenga
\frac{5\sqrt{21}}{\sqrt{28}}
Hei whakarea \sqrt{7} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
\frac{5\sqrt{21}}{2\sqrt{7}}
Tauwehea te 28=2^{2}\times 7. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 7} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{7}. Tuhia te pūtakerua o te 2^{2}.
\frac{5\sqrt{21}\sqrt{7}}{2\left(\sqrt{7}\right)^{2}}
Whakangāwaritia te tauraro o \frac{5\sqrt{21}}{2\sqrt{7}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{7}.
\frac{5\sqrt{21}\sqrt{7}}{2\times 7}
Ko te pūrua o \sqrt{7} ko 7.
\frac{5\sqrt{7}\sqrt{3}\sqrt{7}}{2\times 7}
Tauwehea te 21=7\times 3. Tuhia anō te pūtake rua o te hua \sqrt{7\times 3} hei hua o ngā pūtake rua \sqrt{7}\sqrt{3}.
\frac{5\times 7\sqrt{3}}{2\times 7}
Whakareatia te \sqrt{7} ki te \sqrt{7}, ka 7.
\frac{5\times 7\sqrt{3}}{14}
Whakareatia te 2 ki te 7, ka 14.
\frac{35\sqrt{3}}{14}
Whakareatia te 5 ki te 7, ka 35.
\frac{5}{2}\sqrt{3}
Whakawehea te 35\sqrt{3} ki te 14, kia riro ko \frac{5}{2}\sqrt{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}