Whakaoti mō m
m=6
Whakaoti mō m (complex solution)
m=\frac{2\pi n_{1}i}{\ln(5)}+6
n_{1}\in \mathrm{Z}
Tohaina
Kua tāruatia ki te papatopenga
\frac{5^{m}\times 5^{1}}{5^{-5}}=5^{12}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 3 me te -2 kia riro ai te 1.
5^{6}\times 5^{m}=5^{12}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
5^{6}\times 5^{m}=244140625
Tātaihia te 5 mā te pū o 12, kia riro ko 244140625.
15625\times 5^{m}=244140625
Tātaihia te 5 mā te pū o 6, kia riro ko 15625.
5^{m}=\frac{244140625}{15625}
Whakawehea ngā taha e rua ki te 15625.
5^{m}=15625
Whakawehea te 244140625 ki te 15625, kia riro ko 15625.
\log(5^{m})=\log(15625)
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
m\log(5)=\log(15625)
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
m=\frac{\log(15625)}{\log(5)}
Whakawehea ngā taha e rua ki te \log(5).
m=\log_{5}\left(15625\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}