Tīpoka ki ngā ihirangi matua
Whakaoti mō m
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{5^{m}\times 5^{1}}{5^{-5}}=5^{12}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 3 me te -2 kia riro ai te 1.
5^{6}\times 5^{m}=5^{12}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
5^{6}\times 5^{m}=244140625
Tātaihia te 5 mā te pū o 12, kia riro ko 244140625.
15625\times 5^{m}=244140625
Tātaihia te 5 mā te pū o 6, kia riro ko 15625.
5^{m}=\frac{244140625}{15625}
Whakawehea ngā taha e rua ki te 15625.
5^{m}=15625
Whakawehea te 244140625 ki te 15625, kia riro ko 15625.
\log(5^{m})=\log(15625)
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
m\log(5)=\log(15625)
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
m=\frac{\log(15625)}{\log(5)}
Whakawehea ngā taha e rua ki te \log(5).
m=\log_{5}\left(15625\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).