Tīpoka ki ngā ihirangi matua
Whakaoti mō m
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{5^{m}\times 5^{1}}{5^{-3}}=5^{1}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 3 me te -2 kia riro ai te 1.
5^{4}\times 5^{m}=5^{1}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
5^{4}\times 5^{m}=5
Tātaihia te 5 mā te pū o 1, kia riro ko 5.
625\times 5^{m}=5
Tātaihia te 5 mā te pū o 4, kia riro ko 625.
5^{m}=\frac{5}{625}
Whakawehea ngā taha e rua ki te 625.
5^{m}=\frac{1}{125}
Whakahekea te hautanga \frac{5}{625} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\log(5^{m})=\log(\frac{1}{125})
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
m\log(5)=\log(\frac{1}{125})
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
m=\frac{\log(\frac{1}{125})}{\log(5)}
Whakawehea ngā taha e rua ki te \log(5).
m=\log_{5}\left(\frac{1}{125}\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).