Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Wāhi Tūturu
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(5+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 1+i.
\frac{\left(5+i\right)\left(1+i\right)}{1^{2}-i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+i\right)\left(1+i\right)}{2}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{5\times 1+5i+i+i^{2}}{2}
Me whakarea ngā tau matatini 5+i me 1+i pēnā i te whakarea huarua.
\frac{5\times 1+5i+i-1}{2}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{5+5i+i-1}{2}
Mahia ngā whakarea i roto o 5\times 1+5i+i-1.
\frac{5-1+\left(5+1\right)i}{2}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 5+5i+i-1.
\frac{4+6i}{2}
Mahia ngā tāpiri i roto o 5-1+\left(5+1\right)i.
2+3i
Whakawehea te 4+6i ki te 2, kia riro ko 2+3i.
Re(\frac{\left(5+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)})
Me whakarea te taurunga me te tauraro o \frac{5+i}{1-i} ki te haumi hiato o te tauraro, 1+i.
Re(\frac{\left(5+i\right)\left(1+i\right)}{1^{2}-i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(5+i\right)\left(1+i\right)}{2})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{5\times 1+5i+i+i^{2}}{2})
Me whakarea ngā tau matatini 5+i me 1+i pēnā i te whakarea huarua.
Re(\frac{5\times 1+5i+i-1}{2})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{5+5i+i-1}{2})
Mahia ngā whakarea i roto o 5\times 1+5i+i-1.
Re(\frac{5-1+\left(5+1\right)i}{2})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 5+5i+i-1.
Re(\frac{4+6i}{2})
Mahia ngā tāpiri i roto o 5-1+\left(5+1\right)i.
Re(2+3i)
Whakawehea te 4+6i ki te 2, kia riro ko 2+3i.
2
Ko te wāhi tūturu o 2+3i ko 2.