Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Wāhi Tūturu
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(5+3i\right)\left(2+4i\right)}{\left(2-4i\right)\left(2+4i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 2+4i.
\frac{\left(5+3i\right)\left(2+4i\right)}{2^{2}-4^{2}i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+3i\right)\left(2+4i\right)}{20}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{5\times 2+5\times \left(4i\right)+3i\times 2+3\times 4i^{2}}{20}
Me whakarea ngā tau matatini 5+3i me 2+4i pēnā i te whakarea huarua.
\frac{5\times 2+5\times \left(4i\right)+3i\times 2+3\times 4\left(-1\right)}{20}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{10+20i+6i-12}{20}
Mahia ngā whakarea i roto o 5\times 2+5\times \left(4i\right)+3i\times 2+3\times 4\left(-1\right).
\frac{10-12+\left(20+6\right)i}{20}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 10+20i+6i-12.
\frac{-2+26i}{20}
Mahia ngā tāpiri i roto o 10-12+\left(20+6\right)i.
-\frac{1}{10}+\frac{13}{10}i
Whakawehea te -2+26i ki te 20, kia riro ko -\frac{1}{10}+\frac{13}{10}i.
Re(\frac{\left(5+3i\right)\left(2+4i\right)}{\left(2-4i\right)\left(2+4i\right)})
Me whakarea te taurunga me te tauraro o \frac{5+3i}{2-4i} ki te haumi hiato o te tauraro, 2+4i.
Re(\frac{\left(5+3i\right)\left(2+4i\right)}{2^{2}-4^{2}i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(5+3i\right)\left(2+4i\right)}{20})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{5\times 2+5\times \left(4i\right)+3i\times 2+3\times 4i^{2}}{20})
Me whakarea ngā tau matatini 5+3i me 2+4i pēnā i te whakarea huarua.
Re(\frac{5\times 2+5\times \left(4i\right)+3i\times 2+3\times 4\left(-1\right)}{20})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{10+20i+6i-12}{20})
Mahia ngā whakarea i roto o 5\times 2+5\times \left(4i\right)+3i\times 2+3\times 4\left(-1\right).
Re(\frac{10-12+\left(20+6\right)i}{20})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 10+20i+6i-12.
Re(\frac{-2+26i}{20})
Mahia ngā tāpiri i roto o 10-12+\left(20+6\right)i.
Re(-\frac{1}{10}+\frac{13}{10}i)
Whakawehea te -2+26i ki te 20, kia riro ko -\frac{1}{10}+\frac{13}{10}i.
-\frac{1}{10}
Ko te wāhi tūturu o -\frac{1}{10}+\frac{13}{10}i ko -\frac{1}{10}.