Whakaoti mō y
y=-\frac{\sqrt{3}\left(x+6\sqrt{3}-11\right)}{3}
Whakaoti mō x
x=-\sqrt{3}y+11-6\sqrt{3}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}=x+\sqrt{3}y
Whakangāwaritia te tauraro o \frac{5+2\sqrt{3}}{7+4\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te 7-4\sqrt{3}.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{7^{2}-\left(4\sqrt{3}\right)^{2}}=x+\sqrt{3}y
Whakaarohia te \left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-\left(4\sqrt{3}\right)^{2}}=x+\sqrt{3}y
Tātaihia te 7 mā te pū o 2, kia riro ko 49.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-4^{2}\left(\sqrt{3}\right)^{2}}=x+\sqrt{3}y
Whakarohaina te \left(4\sqrt{3}\right)^{2}.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-16\left(\sqrt{3}\right)^{2}}=x+\sqrt{3}y
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-16\times 3}=x+\sqrt{3}y
Ko te pūrua o \sqrt{3} ko 3.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-48}=x+\sqrt{3}y
Whakareatia te 16 ki te 3, ka 48.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{1}=x+\sqrt{3}y
Tangohia te 48 i te 49, ka 1.
\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)=x+\sqrt{3}y
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
35-6\sqrt{3}-8\left(\sqrt{3}\right)^{2}=x+\sqrt{3}y
Whakamahia te āhuatanga tuaritanga hei whakarea te 5+2\sqrt{3} ki te 7-4\sqrt{3} ka whakakotahi i ngā kupu rite.
35-6\sqrt{3}-8\times 3=x+\sqrt{3}y
Ko te pūrua o \sqrt{3} ko 3.
35-6\sqrt{3}-24=x+\sqrt{3}y
Whakareatia te -8 ki te 3, ka -24.
11-6\sqrt{3}=x+\sqrt{3}y
Tangohia te 24 i te 35, ka 11.
x+\sqrt{3}y=11-6\sqrt{3}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\sqrt{3}y=11-6\sqrt{3}-x
Tangohia te x mai i ngā taha e rua.
\sqrt{3}y=-x+11-6\sqrt{3}
He hanga arowhānui tō te whārite.
\frac{\sqrt{3}y}{\sqrt{3}}=\frac{-x+11-6\sqrt{3}}{\sqrt{3}}
Whakawehea ngā taha e rua ki te \sqrt{3}.
y=\frac{-x+11-6\sqrt{3}}{\sqrt{3}}
Mā te whakawehe ki te \sqrt{3} ka wetekia te whakareanga ki te \sqrt{3}.
y=\frac{\sqrt{3}\left(-x+11-6\sqrt{3}\right)}{3}
Whakawehe -6\sqrt{3}-x+11 ki te \sqrt{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}