Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(49y^{6}\right)^{1}\times \frac{1}{56y^{2}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
49^{1}\left(y^{6}\right)^{1}\times \frac{1}{56}\times \frac{1}{y^{2}}
Hei hiki i te hua o ngā tau e rua, neke atu rānei ki tētahi pū, hīkina ia tau ki te pū ka tuhi ko tāna hua.
49^{1}\times \frac{1}{56}\left(y^{6}\right)^{1}\times \frac{1}{y^{2}}
Whakamahia te Āhuatanga Kōaro o te Whakareanga.
49^{1}\times \frac{1}{56}y^{6}y^{2\left(-1\right)}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū.
49^{1}\times \frac{1}{56}y^{6}y^{-2}
Whakareatia 2 ki te -1.
49^{1}\times \frac{1}{56}y^{6-2}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
49^{1}\times \frac{1}{56}y^{4}
Tāpirihia ngā taupū 6 me -2.
49\times \frac{1}{56}y^{4}
Hīkina te 49 ki te pū 1.
\frac{7}{8}y^{4}
Whakareatia 49 ki te \frac{1}{56}.
\frac{49^{1}y^{6}}{56^{1}y^{2}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{49^{1}y^{6-2}}{56^{1}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{49^{1}y^{4}}{56^{1}}
Tango 2 mai i 6.
\frac{7}{8}y^{4}
Whakahekea te hautanga \frac{49}{56} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{49}{56}y^{6-2})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{7}{8}y^{4})
Mahia ngā tātaitanga.
4\times \frac{7}{8}y^{4-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{7}{2}y^{3}
Mahia ngā tātaitanga.