Aromātai
\frac{9b}{7b-2}
Kimi Pārōnaki e ai ki b
-\frac{18}{\left(7b-2\right)^{2}}
Tohaina
Kua tāruatia ki te papatopenga
\frac{49b^{2}\left(63b+18\right)}{\left(49b^{2}-4\right)\times 49b}
Whakawehe \frac{49b^{2}}{49b^{2}-4} ki te \frac{49b}{63b+18} mā te whakarea \frac{49b^{2}}{49b^{2}-4} ki te tau huripoki o \frac{49b}{63b+18}.
\frac{b\left(63b+18\right)}{49b^{2}-4}
Me whakakore tahi te 49b i te taurunga me te tauraro.
\frac{9b\left(7b+2\right)}{\left(7b-2\right)\left(7b+2\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{9b}{7b-2}
Me whakakore tahi te 7b+2 i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{49b^{2}\left(63b+18\right)}{\left(49b^{2}-4\right)\times 49b})
Whakawehe \frac{49b^{2}}{49b^{2}-4} ki te \frac{49b}{63b+18} mā te whakarea \frac{49b^{2}}{49b^{2}-4} ki te tau huripoki o \frac{49b}{63b+18}.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{b\left(63b+18\right)}{49b^{2}-4})
Me whakakore tahi te 49b i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{9b\left(7b+2\right)}{\left(7b-2\right)\left(7b+2\right)})
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{b\left(63b+18\right)}{49b^{2}-4}.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{9b}{7b-2})
Me whakakore tahi te 7b+2 i te taurunga me te tauraro.
\frac{\left(7b^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}b}(9b^{1})-9b^{1}\frac{\mathrm{d}}{\mathrm{d}b}(7b^{1}-2)}{\left(7b^{1}-2\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(7b^{1}-2\right)\times 9b^{1-1}-9b^{1}\times 7b^{1-1}}{\left(7b^{1}-2\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(7b^{1}-2\right)\times 9b^{0}-9b^{1}\times 7b^{0}}{\left(7b^{1}-2\right)^{2}}
Mahia ngā tātaitanga.
\frac{7b^{1}\times 9b^{0}-2\times 9b^{0}-9b^{1}\times 7b^{0}}{\left(7b^{1}-2\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{7\times 9b^{1}-2\times 9b^{0}-9\times 7b^{1}}{\left(7b^{1}-2\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{63b^{1}-18b^{0}-63b^{1}}{\left(7b^{1}-2\right)^{2}}
Mahia ngā tātaitanga.
\frac{\left(63-63\right)b^{1}-18b^{0}}{\left(7b^{1}-2\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-18b^{0}}{\left(7b^{1}-2\right)^{2}}
Tango 63 mai i 63.
\frac{-18b^{0}}{\left(7b-2\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{-18}{\left(7b-2\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}