Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{49}{2}\left(2+48\right)-\frac{x}{2}\left(2\times 1+\left(x-1\right)\times 1\right)
Whakareatia te 2 ki te 1, ka 2.
\frac{49}{2}\times 50-\frac{x}{2}\left(2\times 1+\left(x-1\right)\times 1\right)
Tāpirihia te 2 ki te 48, ka 50.
\frac{49\times 50}{2}-\frac{x}{2}\left(2\times 1+\left(x-1\right)\times 1\right)
Tuhia te \frac{49}{2}\times 50 hei hautanga kotahi.
\frac{2450}{2}-\frac{x}{2}\left(2\times 1+\left(x-1\right)\times 1\right)
Whakareatia te 49 ki te 50, ka 2450.
1225-\frac{x}{2}\left(2\times 1+\left(x-1\right)\times 1\right)
Whakawehea te 2450 ki te 2, kia riro ko 1225.
1225-\frac{x}{2}\left(2+\left(x-1\right)\times 1\right)
Whakareatia te 2 ki te 1, ka 2.
1225-\frac{x}{2}\left(2+x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te 1.
1225-\frac{x}{2}\left(1+x\right)
Tangohia te 1 i te 2, ka 1.
1225-\frac{x\left(1+x\right)}{2}
Tuhia te \frac{x}{2}\left(1+x\right) hei hautanga kotahi.
1225-\frac{x+x^{2}}{2}
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 1+x.
\frac{1225\times 2}{2}-\frac{x+x^{2}}{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1225 ki te \frac{2}{2}.
\frac{1225\times 2-\left(x+x^{2}\right)}{2}
Tā te mea he rite te tauraro o \frac{1225\times 2}{2} me \frac{x+x^{2}}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{2450-x-x^{2}}{2}
Mahia ngā whakarea i roto o 1225\times 2-\left(x+x^{2}\right).
\frac{49}{2}\left(2+48\right)-\frac{x}{2}\left(2\times 1+\left(x-1\right)\times 1\right)
Whakareatia te 2 ki te 1, ka 2.
\frac{49}{2}\times 50-\frac{x}{2}\left(2\times 1+\left(x-1\right)\times 1\right)
Tāpirihia te 2 ki te 48, ka 50.
\frac{49\times 50}{2}-\frac{x}{2}\left(2\times 1+\left(x-1\right)\times 1\right)
Tuhia te \frac{49}{2}\times 50 hei hautanga kotahi.
\frac{2450}{2}-\frac{x}{2}\left(2\times 1+\left(x-1\right)\times 1\right)
Whakareatia te 49 ki te 50, ka 2450.
1225-\frac{x}{2}\left(2\times 1+\left(x-1\right)\times 1\right)
Whakawehea te 2450 ki te 2, kia riro ko 1225.
1225-\frac{x}{2}\left(2+\left(x-1\right)\times 1\right)
Whakareatia te 2 ki te 1, ka 2.
1225-\frac{x}{2}\left(2+x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te 1.
1225-\frac{x}{2}\left(1+x\right)
Tangohia te 1 i te 2, ka 1.
1225-\frac{x\left(1+x\right)}{2}
Tuhia te \frac{x}{2}\left(1+x\right) hei hautanga kotahi.
1225-\frac{x+x^{2}}{2}
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 1+x.
\frac{1225\times 2}{2}-\frac{x+x^{2}}{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1225 ki te \frac{2}{2}.
\frac{1225\times 2-\left(x+x^{2}\right)}{2}
Tā te mea he rite te tauraro o \frac{1225\times 2}{2} me \frac{x+x^{2}}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{2450-x-x^{2}}{2}
Mahia ngā whakarea i roto o 1225\times 2-\left(x+x^{2}\right).