Aromātai
\frac{\left(49-x\right)\left(x+50\right)}{2}
Whakaroha
-\frac{x^{2}}{2}-\frac{x}{2}+1225
Graph
Pātaitai
Polynomial
\frac { 49 } { 2 } [ 2 ( 1 ) + 48 ] - \frac { x } { 2 } [ 2 ( 1 ) + ( x - 1 ) ( 1 ) ]
Tohaina
Kua tāruatia ki te papatopenga
\frac{49}{2}\left(2+48\right)-\frac{x}{2}\left(2\times 1+\left(x-1\right)\times 1\right)
Whakareatia te 2 ki te 1, ka 2.
\frac{49}{2}\times 50-\frac{x}{2}\left(2\times 1+\left(x-1\right)\times 1\right)
Tāpirihia te 2 ki te 48, ka 50.
\frac{49\times 50}{2}-\frac{x}{2}\left(2\times 1+\left(x-1\right)\times 1\right)
Tuhia te \frac{49}{2}\times 50 hei hautanga kotahi.
\frac{2450}{2}-\frac{x}{2}\left(2\times 1+\left(x-1\right)\times 1\right)
Whakareatia te 49 ki te 50, ka 2450.
1225-\frac{x}{2}\left(2\times 1+\left(x-1\right)\times 1\right)
Whakawehea te 2450 ki te 2, kia riro ko 1225.
1225-\frac{x}{2}\left(2+\left(x-1\right)\times 1\right)
Whakareatia te 2 ki te 1, ka 2.
1225-\frac{x}{2}\left(2+x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te 1.
1225-\frac{x}{2}\left(1+x\right)
Tangohia te 1 i te 2, ka 1.
1225-\frac{x\left(1+x\right)}{2}
Tuhia te \frac{x}{2}\left(1+x\right) hei hautanga kotahi.
1225-\frac{x+x^{2}}{2}
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 1+x.
\frac{1225\times 2}{2}-\frac{x+x^{2}}{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1225 ki te \frac{2}{2}.
\frac{1225\times 2-\left(x+x^{2}\right)}{2}
Tā te mea he rite te tauraro o \frac{1225\times 2}{2} me \frac{x+x^{2}}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{2450-x-x^{2}}{2}
Mahia ngā whakarea i roto o 1225\times 2-\left(x+x^{2}\right).
\frac{49}{2}\left(2+48\right)-\frac{x}{2}\left(2\times 1+\left(x-1\right)\times 1\right)
Whakareatia te 2 ki te 1, ka 2.
\frac{49}{2}\times 50-\frac{x}{2}\left(2\times 1+\left(x-1\right)\times 1\right)
Tāpirihia te 2 ki te 48, ka 50.
\frac{49\times 50}{2}-\frac{x}{2}\left(2\times 1+\left(x-1\right)\times 1\right)
Tuhia te \frac{49}{2}\times 50 hei hautanga kotahi.
\frac{2450}{2}-\frac{x}{2}\left(2\times 1+\left(x-1\right)\times 1\right)
Whakareatia te 49 ki te 50, ka 2450.
1225-\frac{x}{2}\left(2\times 1+\left(x-1\right)\times 1\right)
Whakawehea te 2450 ki te 2, kia riro ko 1225.
1225-\frac{x}{2}\left(2+\left(x-1\right)\times 1\right)
Whakareatia te 2 ki te 1, ka 2.
1225-\frac{x}{2}\left(2+x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te 1.
1225-\frac{x}{2}\left(1+x\right)
Tangohia te 1 i te 2, ka 1.
1225-\frac{x\left(1+x\right)}{2}
Tuhia te \frac{x}{2}\left(1+x\right) hei hautanga kotahi.
1225-\frac{x+x^{2}}{2}
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 1+x.
\frac{1225\times 2}{2}-\frac{x+x^{2}}{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1225 ki te \frac{2}{2}.
\frac{1225\times 2-\left(x+x^{2}\right)}{2}
Tā te mea he rite te tauraro o \frac{1225\times 2}{2} me \frac{x+x^{2}}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{2450-x-x^{2}}{2}
Mahia ngā whakarea i roto o 1225\times 2-\left(x+x^{2}\right).
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}