Aromātai
\frac{150000}{581}\approx 258.17555938
Tauwehe
\frac{3 \cdot 2 ^ {4} \cdot 5 ^ {5}}{7 \cdot 83} = 258\frac{102}{581} = 258.1755593803787
Tohaina
Kua tāruatia ki te papatopenga
\frac{46.06\times 1000}{2.303\times 0.083}\left(\frac{1}{400}-\frac{1}{700}\right)
Tātaihia te 10 mā te pū o 3, kia riro ko 1000.
\frac{46060}{2.303\times 0.083}\left(\frac{1}{400}-\frac{1}{700}\right)
Whakareatia te 46.06 ki te 1000, ka 46060.
\frac{46060}{0.191149}\left(\frac{1}{400}-\frac{1}{700}\right)
Whakareatia te 2.303 ki te 0.083, ka 0.191149.
\frac{46060000000}{191149}\left(\frac{1}{400}-\frac{1}{700}\right)
Whakarohaina te \frac{46060}{0.191149} mā te whakarea i te taurunga me te tauraro ki te 1000000.
\frac{20000000}{83}\left(\frac{1}{400}-\frac{1}{700}\right)
Whakahekea te hautanga \frac{46060000000}{191149} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2303.
\frac{20000000}{83}\left(\frac{7}{2800}-\frac{4}{2800}\right)
Ko te maha noa iti rawa atu o 400 me 700 ko 2800. Me tahuri \frac{1}{400} me \frac{1}{700} ki te hautau me te tautūnga 2800.
\frac{20000000}{83}\times \frac{7-4}{2800}
Tā te mea he rite te tauraro o \frac{7}{2800} me \frac{4}{2800}, me tango rāua mā te tango i ō raua taurunga.
\frac{20000000}{83}\times \frac{3}{2800}
Tangohia te 4 i te 7, ka 3.
\frac{20000000\times 3}{83\times 2800}
Me whakarea te \frac{20000000}{83} ki te \frac{3}{2800} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{60000000}{232400}
Mahia ngā whakarea i roto i te hautanga \frac{20000000\times 3}{83\times 2800}.
\frac{150000}{581}
Whakahekea te hautanga \frac{60000000}{232400} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 400.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}