Aromātai
\frac{276}{493}\approx 0.559837728
Tauwehe
\frac{2 ^ {2} \cdot 3 \cdot 23}{17 \cdot 29} = 0.5598377281947262
Tohaina
Kua tāruatia ki te papatopenga
\frac{46}{35\times \frac{3+1}{3}-\frac{\frac{5\times 2+1}{2}}{\frac{3\times 3+2}{3}}+37}
Whakareatia te 1 ki te 3, ka 3.
\frac{46}{35\times \frac{4}{3}-\frac{\frac{5\times 2+1}{2}}{\frac{3\times 3+2}{3}}+37}
Tāpirihia te 3 ki te 1, ka 4.
\frac{46}{\frac{35\times 4}{3}-\frac{\frac{5\times 2+1}{2}}{\frac{3\times 3+2}{3}}+37}
Tuhia te 35\times \frac{4}{3} hei hautanga kotahi.
\frac{46}{\frac{140}{3}-\frac{\frac{5\times 2+1}{2}}{\frac{3\times 3+2}{3}}+37}
Whakareatia te 35 ki te 4, ka 140.
\frac{46}{\frac{140}{3}-\frac{\left(5\times 2+1\right)\times 3}{2\left(3\times 3+2\right)}+37}
Whakawehe \frac{5\times 2+1}{2} ki te \frac{3\times 3+2}{3} mā te whakarea \frac{5\times 2+1}{2} ki te tau huripoki o \frac{3\times 3+2}{3}.
\frac{46}{\frac{140}{3}-\frac{\left(10+1\right)\times 3}{2\left(3\times 3+2\right)}+37}
Whakareatia te 5 ki te 2, ka 10.
\frac{46}{\frac{140}{3}-\frac{11\times 3}{2\left(3\times 3+2\right)}+37}
Tāpirihia te 10 ki te 1, ka 11.
\frac{46}{\frac{140}{3}-\frac{33}{2\left(3\times 3+2\right)}+37}
Whakareatia te 11 ki te 3, ka 33.
\frac{46}{\frac{140}{3}-\frac{33}{2\left(9+2\right)}+37}
Whakareatia te 3 ki te 3, ka 9.
\frac{46}{\frac{140}{3}-\frac{33}{2\times 11}+37}
Tāpirihia te 9 ki te 2, ka 11.
\frac{46}{\frac{140}{3}-\frac{33}{22}+37}
Whakareatia te 2 ki te 11, ka 22.
\frac{46}{\frac{140}{3}-\frac{3}{2}+37}
Whakahekea te hautanga \frac{33}{22} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 11.
\frac{46}{\frac{280}{6}-\frac{9}{6}+37}
Ko te maha noa iti rawa atu o 3 me 2 ko 6. Me tahuri \frac{140}{3} me \frac{3}{2} ki te hautau me te tautūnga 6.
\frac{46}{\frac{280-9}{6}+37}
Tā te mea he rite te tauraro o \frac{280}{6} me \frac{9}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{46}{\frac{271}{6}+37}
Tangohia te 9 i te 280, ka 271.
\frac{46}{\frac{271}{6}+\frac{222}{6}}
Me tahuri te 37 ki te hautau \frac{222}{6}.
\frac{46}{\frac{271+222}{6}}
Tā te mea he rite te tauraro o \frac{271}{6} me \frac{222}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{46}{\frac{493}{6}}
Tāpirihia te 271 ki te 222, ka 493.
46\times \frac{6}{493}
Whakawehe 46 ki te \frac{493}{6} mā te whakarea 46 ki te tau huripoki o \frac{493}{6}.
\frac{46\times 6}{493}
Tuhia te 46\times \frac{6}{493} hei hautanga kotahi.
\frac{276}{493}
Whakareatia te 46 ki te 6, ka 276.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}