Aromātai
-\frac{1}{2}=-0.5
Tauwehe
-\frac{1}{2} = -0.5
Tohaina
Kua tāruatia ki te papatopenga
\frac{2025-2\times 45\times 45+15\times 15}{45\times 45+2\times 45\times 15+15\times 15}
Whakareatia te 45 ki te 45, ka 2025.
\frac{2025-90\times 45+15\times 15}{45\times 45+2\times 45\times 15+15\times 15}
Whakareatia te 2 ki te 45, ka 90.
\frac{2025-4050+15\times 15}{45\times 45+2\times 45\times 15+15\times 15}
Whakareatia te 90 ki te 45, ka 4050.
\frac{-2025+15\times 15}{45\times 45+2\times 45\times 15+15\times 15}
Tangohia te 4050 i te 2025, ka -2025.
\frac{-2025+225}{45\times 45+2\times 45\times 15+15\times 15}
Whakareatia te 15 ki te 15, ka 225.
\frac{-1800}{45\times 45+2\times 45\times 15+15\times 15}
Tāpirihia te -2025 ki te 225, ka -1800.
\frac{-1800}{2025+90\times 15+225}
Whakareatia te 45 ki te 45, ka 2025. Whakareatia te 2 ki te 45, ka 90. Whakareatia te 15 ki te 15, ka 225.
\frac{-1800}{2025+1350+225}
Whakareatia te 90 ki te 15, ka 1350.
\frac{-1800}{3375+225}
Tāpirihia te 2025 ki te 1350, ka 3375.
\frac{-1800}{3600}
Tāpirihia te 3375 ki te 225, ka 3600.
-\frac{1}{2}
Whakahekea te hautanga \frac{-1800}{3600} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 1800.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}