Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{40^{1}x^{1}y^{5}}{16^{1}x^{2}y^{3}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{40^{1}}{16^{1}}x^{1-2}y^{5-3}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{40^{1}}{16^{1}}\times \frac{1}{x}y^{5-3}
Tango 2 mai i 1.
\frac{40^{1}}{16^{1}}\times \frac{1}{x}y^{2}
Tango 3 mai i 5.
\frac{5}{2}\times \frac{1}{x}y^{2}
Whakahekea te hautanga \frac{40}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{40y^{5}}{16y^{3}}x^{1-2})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5y^{2}}{2}\times \frac{1}{x})
Mahia ngā tātaitanga.
-\frac{5y^{2}}{2}x^{-1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\left(-\frac{5y^{2}}{2}\right)x^{-2}
Mahia ngā tātaitanga.