Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{4y+9}{\left(y-4\right)\left(y+6\right)}+\frac{7}{\left(y-1\right)\left(y+6\right)}
Tauwehea te y^{2}+2y-24. Tauwehea te y^{2}+5y-6.
\frac{\left(4y+9\right)\left(y-1\right)}{\left(y-4\right)\left(y-1\right)\left(y+6\right)}+\frac{7\left(y-4\right)}{\left(y-4\right)\left(y-1\right)\left(y+6\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(y-4\right)\left(y+6\right) me \left(y-1\right)\left(y+6\right) ko \left(y-4\right)\left(y-1\right)\left(y+6\right). Whakareatia \frac{4y+9}{\left(y-4\right)\left(y+6\right)} ki te \frac{y-1}{y-1}. Whakareatia \frac{7}{\left(y-1\right)\left(y+6\right)} ki te \frac{y-4}{y-4}.
\frac{\left(4y+9\right)\left(y-1\right)+7\left(y-4\right)}{\left(y-4\right)\left(y-1\right)\left(y+6\right)}
Tā te mea he rite te tauraro o \frac{\left(4y+9\right)\left(y-1\right)}{\left(y-4\right)\left(y-1\right)\left(y+6\right)} me \frac{7\left(y-4\right)}{\left(y-4\right)\left(y-1\right)\left(y+6\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{4y^{2}-4y+9y-9+7y-28}{\left(y-4\right)\left(y-1\right)\left(y+6\right)}
Mahia ngā whakarea i roto o \left(4y+9\right)\left(y-1\right)+7\left(y-4\right).
\frac{4y^{2}+12y-37}{\left(y-4\right)\left(y-1\right)\left(y+6\right)}
Whakakotahitia ngā kupu rite i 4y^{2}-4y+9y-9+7y-28.
\frac{4y^{2}+12y-37}{y^{3}+y^{2}-26y+24}
Whakarohaina te \left(y-4\right)\left(y-1\right)\left(y+6\right).
\frac{4y+9}{\left(y-4\right)\left(y+6\right)}+\frac{7}{\left(y-1\right)\left(y+6\right)}
Tauwehea te y^{2}+2y-24. Tauwehea te y^{2}+5y-6.
\frac{\left(4y+9\right)\left(y-1\right)}{\left(y-4\right)\left(y-1\right)\left(y+6\right)}+\frac{7\left(y-4\right)}{\left(y-4\right)\left(y-1\right)\left(y+6\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(y-4\right)\left(y+6\right) me \left(y-1\right)\left(y+6\right) ko \left(y-4\right)\left(y-1\right)\left(y+6\right). Whakareatia \frac{4y+9}{\left(y-4\right)\left(y+6\right)} ki te \frac{y-1}{y-1}. Whakareatia \frac{7}{\left(y-1\right)\left(y+6\right)} ki te \frac{y-4}{y-4}.
\frac{\left(4y+9\right)\left(y-1\right)+7\left(y-4\right)}{\left(y-4\right)\left(y-1\right)\left(y+6\right)}
Tā te mea he rite te tauraro o \frac{\left(4y+9\right)\left(y-1\right)}{\left(y-4\right)\left(y-1\right)\left(y+6\right)} me \frac{7\left(y-4\right)}{\left(y-4\right)\left(y-1\right)\left(y+6\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{4y^{2}-4y+9y-9+7y-28}{\left(y-4\right)\left(y-1\right)\left(y+6\right)}
Mahia ngā whakarea i roto o \left(4y+9\right)\left(y-1\right)+7\left(y-4\right).
\frac{4y^{2}+12y-37}{\left(y-4\right)\left(y-1\right)\left(y+6\right)}
Whakakotahitia ngā kupu rite i 4y^{2}-4y+9y-9+7y-28.
\frac{4y^{2}+12y-37}{y^{3}+y^{2}-26y+24}
Whakarohaina te \left(y-4\right)\left(y-1\right)\left(y+6\right).