Aromātai
\frac{4y^{2}+12y-37}{\left(y-4\right)\left(y-1\right)\left(y+6\right)}
Whakaroha
\frac{4y^{2}+12y-37}{\left(y-4\right)\left(y-1\right)\left(y+6\right)}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{4y+9}{\left(y-4\right)\left(y+6\right)}+\frac{7}{\left(y-1\right)\left(y+6\right)}
Tauwehea te y^{2}+2y-24. Tauwehea te y^{2}+5y-6.
\frac{\left(4y+9\right)\left(y-1\right)}{\left(y-4\right)\left(y-1\right)\left(y+6\right)}+\frac{7\left(y-4\right)}{\left(y-4\right)\left(y-1\right)\left(y+6\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(y-4\right)\left(y+6\right) me \left(y-1\right)\left(y+6\right) ko \left(y-4\right)\left(y-1\right)\left(y+6\right). Whakareatia \frac{4y+9}{\left(y-4\right)\left(y+6\right)} ki te \frac{y-1}{y-1}. Whakareatia \frac{7}{\left(y-1\right)\left(y+6\right)} ki te \frac{y-4}{y-4}.
\frac{\left(4y+9\right)\left(y-1\right)+7\left(y-4\right)}{\left(y-4\right)\left(y-1\right)\left(y+6\right)}
Tā te mea he rite te tauraro o \frac{\left(4y+9\right)\left(y-1\right)}{\left(y-4\right)\left(y-1\right)\left(y+6\right)} me \frac{7\left(y-4\right)}{\left(y-4\right)\left(y-1\right)\left(y+6\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{4y^{2}-4y+9y-9+7y-28}{\left(y-4\right)\left(y-1\right)\left(y+6\right)}
Mahia ngā whakarea i roto o \left(4y+9\right)\left(y-1\right)+7\left(y-4\right).
\frac{4y^{2}+12y-37}{\left(y-4\right)\left(y-1\right)\left(y+6\right)}
Whakakotahitia ngā kupu rite i 4y^{2}-4y+9y-9+7y-28.
\frac{4y^{2}+12y-37}{y^{3}+y^{2}-26y+24}
Whakarohaina te \left(y-4\right)\left(y-1\right)\left(y+6\right).
\frac{4y+9}{\left(y-4\right)\left(y+6\right)}+\frac{7}{\left(y-1\right)\left(y+6\right)}
Tauwehea te y^{2}+2y-24. Tauwehea te y^{2}+5y-6.
\frac{\left(4y+9\right)\left(y-1\right)}{\left(y-4\right)\left(y-1\right)\left(y+6\right)}+\frac{7\left(y-4\right)}{\left(y-4\right)\left(y-1\right)\left(y+6\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(y-4\right)\left(y+6\right) me \left(y-1\right)\left(y+6\right) ko \left(y-4\right)\left(y-1\right)\left(y+6\right). Whakareatia \frac{4y+9}{\left(y-4\right)\left(y+6\right)} ki te \frac{y-1}{y-1}. Whakareatia \frac{7}{\left(y-1\right)\left(y+6\right)} ki te \frac{y-4}{y-4}.
\frac{\left(4y+9\right)\left(y-1\right)+7\left(y-4\right)}{\left(y-4\right)\left(y-1\right)\left(y+6\right)}
Tā te mea he rite te tauraro o \frac{\left(4y+9\right)\left(y-1\right)}{\left(y-4\right)\left(y-1\right)\left(y+6\right)} me \frac{7\left(y-4\right)}{\left(y-4\right)\left(y-1\right)\left(y+6\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{4y^{2}-4y+9y-9+7y-28}{\left(y-4\right)\left(y-1\right)\left(y+6\right)}
Mahia ngā whakarea i roto o \left(4y+9\right)\left(y-1\right)+7\left(y-4\right).
\frac{4y^{2}+12y-37}{\left(y-4\right)\left(y-1\right)\left(y+6\right)}
Whakakotahitia ngā kupu rite i 4y^{2}-4y+9y-9+7y-28.
\frac{4y^{2}+12y-37}{y^{3}+y^{2}-26y+24}
Whakarohaina te \left(y-4\right)\left(y-1\right)\left(y+6\right).
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}