Whakaoti mō y
y=-\frac{9}{20}=-0.45
Graph
Tohaina
Kua tāruatia ki te papatopenga
4y+3=\frac{3}{5}\times 2
Me whakarea ngā taha e rua ki te 2.
4y+3=\frac{3\times 2}{5}
Tuhia te \frac{3}{5}\times 2 hei hautanga kotahi.
4y+3=\frac{6}{5}
Whakareatia te 3 ki te 2, ka 6.
4y=\frac{6}{5}-3
Tangohia te 3 mai i ngā taha e rua.
4y=\frac{6}{5}-\frac{15}{5}
Me tahuri te 3 ki te hautau \frac{15}{5}.
4y=\frac{6-15}{5}
Tā te mea he rite te tauraro o \frac{6}{5} me \frac{15}{5}, me tango rāua mā te tango i ō raua taurunga.
4y=-\frac{9}{5}
Tangohia te 15 i te 6, ka -9.
y=\frac{-\frac{9}{5}}{4}
Whakawehea ngā taha e rua ki te 4.
y=\frac{-9}{5\times 4}
Tuhia te \frac{-\frac{9}{5}}{4} hei hautanga kotahi.
y=\frac{-9}{20}
Whakareatia te 5 ki te 4, ka 20.
y=-\frac{9}{20}
Ka taea te hautanga \frac{-9}{20} te tuhi anō ko -\frac{9}{20} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}