Whakaoti mō x
x=-\frac{13}{188}\approx -0.069148936
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(3x+5\right)\left(4x-7\right)=\left(12x+3\right)\left(x-16\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -\frac{5}{3},-\frac{1}{4} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3\left(3x+5\right)\left(4x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 12x+3,3x+5.
12x^{2}-x-35=\left(12x+3\right)\left(x-16\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x+5 ki te 4x-7 ka whakakotahi i ngā kupu rite.
12x^{2}-x-35=12x^{2}-189x-48
Whakamahia te āhuatanga tuaritanga hei whakarea te 12x+3 ki te x-16 ka whakakotahi i ngā kupu rite.
12x^{2}-x-35-12x^{2}=-189x-48
Tangohia te 12x^{2} mai i ngā taha e rua.
-x-35=-189x-48
Pahekotia te 12x^{2} me -12x^{2}, ka 0.
-x-35+189x=-48
Me tāpiri te 189x ki ngā taha e rua.
188x-35=-48
Pahekotia te -x me 189x, ka 188x.
188x=-48+35
Me tāpiri te 35 ki ngā taha e rua.
188x=-13
Tāpirihia te -48 ki te 35, ka -13.
x=\frac{-13}{188}
Whakawehea ngā taha e rua ki te 188.
x=-\frac{13}{188}
Ka taea te hautanga \frac{-13}{188} te tuhi anō ko -\frac{13}{188} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}