Whakaoti mō x
x = \frac{39}{19} = 2\frac{1}{19} \approx 2.052631579
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(4x-14\right)\left(4x-1\right)+10\left(x+2\right)=\left(2x-7\right)\left(8x-3\right)+10\left(2x-7\right)\left(-\frac{13}{10}\right)
Tē taea kia ōrite te tāupe x ki \frac{7}{2} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 10\left(2x-7\right), arā, te tauraro pātahi he tino iti rawa te kitea o 5,2x-7,10.
16x^{2}-60x+14+10\left(x+2\right)=\left(2x-7\right)\left(8x-3\right)+10\left(2x-7\right)\left(-\frac{13}{10}\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 4x-14 ki te 4x-1 ka whakakotahi i ngā kupu rite.
16x^{2}-60x+14+10x+20=\left(2x-7\right)\left(8x-3\right)+10\left(2x-7\right)\left(-\frac{13}{10}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 10 ki te x+2.
16x^{2}-50x+14+20=\left(2x-7\right)\left(8x-3\right)+10\left(2x-7\right)\left(-\frac{13}{10}\right)
Pahekotia te -60x me 10x, ka -50x.
16x^{2}-50x+34=\left(2x-7\right)\left(8x-3\right)+10\left(2x-7\right)\left(-\frac{13}{10}\right)
Tāpirihia te 14 ki te 20, ka 34.
16x^{2}-50x+34=16x^{2}-62x+21+10\left(2x-7\right)\left(-\frac{13}{10}\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x-7 ki te 8x-3 ka whakakotahi i ngā kupu rite.
16x^{2}-50x+34=16x^{2}-62x+21-13\left(2x-7\right)
Whakareatia te 10 ki te -\frac{13}{10}, ka -13.
16x^{2}-50x+34=16x^{2}-62x+21-26x+91
Whakamahia te āhuatanga tohatoha hei whakarea te -13 ki te 2x-7.
16x^{2}-50x+34=16x^{2}-88x+21+91
Pahekotia te -62x me -26x, ka -88x.
16x^{2}-50x+34=16x^{2}-88x+112
Tāpirihia te 21 ki te 91, ka 112.
16x^{2}-50x+34-16x^{2}=-88x+112
Tangohia te 16x^{2} mai i ngā taha e rua.
-50x+34=-88x+112
Pahekotia te 16x^{2} me -16x^{2}, ka 0.
-50x+34+88x=112
Me tāpiri te 88x ki ngā taha e rua.
38x+34=112
Pahekotia te -50x me 88x, ka 38x.
38x=112-34
Tangohia te 34 mai i ngā taha e rua.
38x=78
Tangohia te 34 i te 112, ka 78.
x=\frac{78}{38}
Whakawehea ngā taha e rua ki te 38.
x=\frac{39}{19}
Whakahekea te hautanga \frac{78}{38} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}