Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{4^{1}x^{4}y^{1}}{8^{1}x^{5}y^{3}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{4^{1}}{8^{1}}x^{4-5}y^{1-3}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{4^{1}}{8^{1}}\times \frac{1}{x}y^{1-3}
Tango 5 mai i 4.
\frac{4^{1}}{8^{1}}\times \frac{1}{x}y^{-2}
Tango 3 mai i 1.
\frac{1}{2}\times \frac{1}{x}\times \frac{1}{y^{2}}
Whakahekea te hautanga \frac{4}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4y}{8y^{3}}x^{4-5})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{2y^{2}}\times \frac{1}{x})
Mahia ngā tātaitanga.
-\frac{1}{2y^{2}}x^{-1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\left(-\frac{1}{2y^{2}}\right)x^{-2}
Mahia ngā tātaitanga.