Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{4^{1}\sqrt{x}}{8^{1}\sqrt[3]{x}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{4^{1}x^{\frac{1}{2}-\frac{1}{3}}}{8^{1}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{4^{1}\sqrt[6]{x}}{8^{1}}
Tango \frac{1}{3} mai i \frac{1}{2} mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\frac{1}{2}\sqrt[6]{x}
Whakahekea te hautanga \frac{4}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4}{8}x^{\frac{1}{2}-\frac{1}{3}})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{2}\sqrt[6]{x})
Mahia ngā tātaitanga.
\frac{1}{6}\times \frac{1}{2}x^{\frac{1}{6}-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{1}{12}x^{-\frac{5}{6}}
Mahia ngā tātaitanga.