Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3\left(4x+6\right)=\left(6x+2\right)\times 2x
Tē taea kia ōrite te tāupe x ki -\frac{1}{3} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 12\left(3x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 12x+4,6.
12x+18=\left(6x+2\right)\times 2x
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 4x+6.
12x+18=\left(12x+4\right)x
Whakamahia te āhuatanga tohatoha hei whakarea te 6x+2 ki te 2.
12x+18=12x^{2}+4x
Whakamahia te āhuatanga tohatoha hei whakarea te 12x+4 ki te x.
12x+18-12x^{2}=4x
Tangohia te 12x^{2} mai i ngā taha e rua.
12x+18-12x^{2}-4x=0
Tangohia te 4x mai i ngā taha e rua.
8x+18-12x^{2}=0
Pahekotia te 12x me -4x, ka 8x.
-12x^{2}+8x+18=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-8±\sqrt{8^{2}-4\left(-12\right)\times 18}}{2\left(-12\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -12 mō a, 8 mō b, me 18 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\left(-12\right)\times 18}}{2\left(-12\right)}
Pūrua 8.
x=\frac{-8±\sqrt{64+48\times 18}}{2\left(-12\right)}
Whakareatia -4 ki te -12.
x=\frac{-8±\sqrt{64+864}}{2\left(-12\right)}
Whakareatia 48 ki te 18.
x=\frac{-8±\sqrt{928}}{2\left(-12\right)}
Tāpiri 64 ki te 864.
x=\frac{-8±4\sqrt{58}}{2\left(-12\right)}
Tuhia te pūtakerua o te 928.
x=\frac{-8±4\sqrt{58}}{-24}
Whakareatia 2 ki te -12.
x=\frac{4\sqrt{58}-8}{-24}
Nā, me whakaoti te whārite x=\frac{-8±4\sqrt{58}}{-24} ina he tāpiri te ±. Tāpiri -8 ki te 4\sqrt{58}.
x=-\frac{\sqrt{58}}{6}+\frac{1}{3}
Whakawehe -8+4\sqrt{58} ki te -24.
x=\frac{-4\sqrt{58}-8}{-24}
Nā, me whakaoti te whārite x=\frac{-8±4\sqrt{58}}{-24} ina he tango te ±. Tango 4\sqrt{58} mai i -8.
x=\frac{\sqrt{58}}{6}+\frac{1}{3}
Whakawehe -8-4\sqrt{58} ki te -24.
x=-\frac{\sqrt{58}}{6}+\frac{1}{3} x=\frac{\sqrt{58}}{6}+\frac{1}{3}
Kua oti te whārite te whakatau.
3\left(4x+6\right)=\left(6x+2\right)\times 2x
Tē taea kia ōrite te tāupe x ki -\frac{1}{3} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 12\left(3x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 12x+4,6.
12x+18=\left(6x+2\right)\times 2x
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 4x+6.
12x+18=\left(12x+4\right)x
Whakamahia te āhuatanga tohatoha hei whakarea te 6x+2 ki te 2.
12x+18=12x^{2}+4x
Whakamahia te āhuatanga tohatoha hei whakarea te 12x+4 ki te x.
12x+18-12x^{2}=4x
Tangohia te 12x^{2} mai i ngā taha e rua.
12x+18-12x^{2}-4x=0
Tangohia te 4x mai i ngā taha e rua.
8x+18-12x^{2}=0
Pahekotia te 12x me -4x, ka 8x.
8x-12x^{2}=-18
Tangohia te 18 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-12x^{2}+8x=-18
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-12x^{2}+8x}{-12}=-\frac{18}{-12}
Whakawehea ngā taha e rua ki te -12.
x^{2}+\frac{8}{-12}x=-\frac{18}{-12}
Mā te whakawehe ki te -12 ka wetekia te whakareanga ki te -12.
x^{2}-\frac{2}{3}x=-\frac{18}{-12}
Whakahekea te hautanga \frac{8}{-12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x^{2}-\frac{2}{3}x=\frac{3}{2}
Whakahekea te hautanga \frac{-18}{-12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=\frac{3}{2}+\left(-\frac{1}{3}\right)^{2}
Whakawehea te -\frac{2}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{3}. Nā, tāpiria te pūrua o te -\frac{1}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{3}{2}+\frac{1}{9}
Pūruatia -\frac{1}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{29}{18}
Tāpiri \frac{3}{2} ki te \frac{1}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{3}\right)^{2}=\frac{29}{18}
Tauwehea x^{2}-\frac{2}{3}x+\frac{1}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{29}{18}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{3}=\frac{\sqrt{58}}{6} x-\frac{1}{3}=-\frac{\sqrt{58}}{6}
Whakarūnātia.
x=\frac{\sqrt{58}}{6}+\frac{1}{3} x=-\frac{\sqrt{58}}{6}+\frac{1}{3}
Me tāpiri \frac{1}{3} ki ngā taha e rua o te whārite.