Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2\left(4x+3y\right)}{6}-\frac{3\left(5x-2y\right)}{6}+1
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 3 me 2 ko 6. Whakareatia \frac{4x+3y}{3} ki te \frac{2}{2}. Whakareatia \frac{5x-2y}{2} ki te \frac{3}{3}.
\frac{2\left(4x+3y\right)-3\left(5x-2y\right)}{6}+1
Tā te mea he rite te tauraro o \frac{2\left(4x+3y\right)}{6} me \frac{3\left(5x-2y\right)}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{8x+6y-15x+6y}{6}+1
Mahia ngā whakarea i roto o 2\left(4x+3y\right)-3\left(5x-2y\right).
\frac{-7x+12y}{6}+1
Whakakotahitia ngā kupu rite i 8x+6y-15x+6y.
\frac{-7x+12y}{6}+\frac{6}{6}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{6}{6}.
\frac{-7x+12y+6}{6}
Tā te mea he rite te tauraro o \frac{-7x+12y}{6} me \frac{6}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2\left(4x+3y\right)}{6}-\frac{3\left(5x-2y\right)}{6}+1
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 3 me 2 ko 6. Whakareatia \frac{4x+3y}{3} ki te \frac{2}{2}. Whakareatia \frac{5x-2y}{2} ki te \frac{3}{3}.
\frac{2\left(4x+3y\right)-3\left(5x-2y\right)}{6}+1
Tā te mea he rite te tauraro o \frac{2\left(4x+3y\right)}{6} me \frac{3\left(5x-2y\right)}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{8x+6y-15x+6y}{6}+1
Mahia ngā whakarea i roto o 2\left(4x+3y\right)-3\left(5x-2y\right).
\frac{-7x+12y}{6}+1
Whakakotahitia ngā kupu rite i 8x+6y-15x+6y.
\frac{-7x+12y}{6}+\frac{6}{6}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{6}{6}.
\frac{-7x+12y+6}{6}
Tā te mea he rite te tauraro o \frac{-7x+12y}{6} me \frac{6}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.