Whakaoti mō x
x=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
21\left(4x+3\right)-15\left(6x-2\right)=35\left(5x+4\right)+315
Me whakarea ngā taha e rua o te whārite ki te 105, arā, te tauraro pātahi he tino iti rawa te kitea o 5,7,3.
84x+63-15\left(6x-2\right)=35\left(5x+4\right)+315
Whakamahia te āhuatanga tohatoha hei whakarea te 21 ki te 4x+3.
84x+63-90x+30=35\left(5x+4\right)+315
Whakamahia te āhuatanga tohatoha hei whakarea te -15 ki te 6x-2.
-6x+63+30=35\left(5x+4\right)+315
Pahekotia te 84x me -90x, ka -6x.
-6x+93=35\left(5x+4\right)+315
Tāpirihia te 63 ki te 30, ka 93.
-6x+93=175x+140+315
Whakamahia te āhuatanga tohatoha hei whakarea te 35 ki te 5x+4.
-6x+93=175x+455
Tāpirihia te 140 ki te 315, ka 455.
-6x+93-175x=455
Tangohia te 175x mai i ngā taha e rua.
-181x+93=455
Pahekotia te -6x me -175x, ka -181x.
-181x=455-93
Tangohia te 93 mai i ngā taha e rua.
-181x=362
Tangohia te 93 i te 455, ka 362.
x=\frac{362}{-181}
Whakawehea ngā taha e rua ki te -181.
x=-2
Whakawehea te 362 ki te -181, kia riro ko -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}