Whakaoti mō x
x=-6
Graph
Tohaina
Kua tāruatia ki te papatopenga
5\left(4x+10\right)=7\left(3x+8\right)
Me whakarea ngā taha e rua o te whārite ki te 35, arā, te tauraro pātahi he tino iti rawa te kitea o 7,5.
20x+50=7\left(3x+8\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te 4x+10.
20x+50=21x+56
Whakamahia te āhuatanga tohatoha hei whakarea te 7 ki te 3x+8.
20x+50-21x=56
Tangohia te 21x mai i ngā taha e rua.
-x+50=56
Pahekotia te 20x me -21x, ka -x.
-x=56-50
Tangohia te 50 mai i ngā taha e rua.
-x=6
Tangohia te 50 i te 56, ka 6.
x=-6
Me whakarea ngā taha e rua ki te -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}