Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{4s}{\left(5s-3t\right)\left(5s+3t\right)}-\frac{s}{5s-3t}
Tauwehea te 25s^{2}-9t^{2}.
\frac{4s}{\left(5s-3t\right)\left(5s+3t\right)}-\frac{s\left(5s+3t\right)}{\left(5s-3t\right)\left(5s+3t\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(5s-3t\right)\left(5s+3t\right) me 5s-3t ko \left(5s-3t\right)\left(5s+3t\right). Whakareatia \frac{s}{5s-3t} ki te \frac{5s+3t}{5s+3t}.
\frac{4s-s\left(5s+3t\right)}{\left(5s-3t\right)\left(5s+3t\right)}
Tā te mea he rite te tauraro o \frac{4s}{\left(5s-3t\right)\left(5s+3t\right)} me \frac{s\left(5s+3t\right)}{\left(5s-3t\right)\left(5s+3t\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{4s-5s^{2}-3st}{\left(5s-3t\right)\left(5s+3t\right)}
Mahia ngā whakarea i roto o 4s-s\left(5s+3t\right).
\frac{4s-5s^{2}-3st}{25s^{2}-9t^{2}}
Whakarohaina te \left(5s-3t\right)\left(5s+3t\right).