Aromātai
\frac{p^{3}}{2}-4
Tauwehe
\frac{\left(p-2\right)\left(p^{2}+2p+4\right)}{2}
Tohaina
Kua tāruatia ki te papatopenga
\frac{4p^{3}}{5}-4-\frac{3p^{3}}{10}
Tangohia te 11 i te 7, ka -4.
\frac{4p^{3}}{5}-\frac{4\times 5}{5}-\frac{3p^{3}}{10}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 4 ki te \frac{5}{5}.
\frac{4p^{3}-4\times 5}{5}-\frac{3p^{3}}{10}
Tā te mea he rite te tauraro o \frac{4p^{3}}{5} me \frac{4\times 5}{5}, me tango rāua mā te tango i ō raua taurunga.
\frac{4p^{3}-20}{5}-\frac{3p^{3}}{10}
Mahia ngā whakarea i roto o 4p^{3}-4\times 5.
\frac{2\left(4p^{3}-20\right)}{10}-\frac{3p^{3}}{10}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 5 me 10 ko 10. Whakareatia \frac{4p^{3}-20}{5} ki te \frac{2}{2}.
\frac{2\left(4p^{3}-20\right)-3p^{3}}{10}
Tā te mea he rite te tauraro o \frac{2\left(4p^{3}-20\right)}{10} me \frac{3p^{3}}{10}, me tango rāua mā te tango i ō raua taurunga.
\frac{8p^{3}-40-3p^{3}}{10}
Mahia ngā whakarea i roto o 2\left(4p^{3}-20\right)-3p^{3}.
\frac{5p^{3}-40}{10}
Whakakotahitia ngā kupu rite i 8p^{3}-40-3p^{3}.
\frac{5p^{3}-40}{10}
Tauwehea te \frac{1}{10}.
5p^{3}-40
Whakaarohia te 8p^{3}+70-3p^{3}-110. Whakarea ka paheko i ngā kīanga tau ōrite.
5\left(p^{3}-8\right)
Whakaarohia te 5p^{3}-40. Tauwehea te 5.
\left(p-2\right)\left(p^{2}+2p+4\right)
Whakaarohia te p^{3}-8. Tuhia anō te p^{3}-8 hei p^{3}-2^{3}. Ka taea te rerekētanga o ngā pūtoru te whakatauwehe mā te whakamahi i te ture: a^{3}-b^{3}=\left(a-b\right)\left(a^{2}+ab+b^{2}\right).
\frac{\left(p-2\right)\left(p^{2}+2p+4\right)}{2}
Me tuhi anō te kīanga whakatauwehe katoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}