Aromātai
\frac{1}{5mn}
Kimi Pārōnaki e ai ki n
-\frac{1}{5mn^{2}}
Tohaina
Kua tāruatia ki te papatopenga
\frac{4^{1}m^{1}n^{3}}{20^{1}m^{2}n^{4}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{4^{1}}{20^{1}}m^{1-2}n^{3-4}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{4^{1}}{20^{1}}\times \frac{1}{m}n^{3-4}
Tango 2 mai i 1.
\frac{4^{1}}{20^{1}}\times \frac{1}{m}\times \frac{1}{n}
Tango 4 mai i 3.
\frac{1}{5}\times \frac{1}{m}\times \frac{1}{n}
Whakahekea te hautanga \frac{4}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}