Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{4k+23}{k^{2}-15k}-\frac{k\left(k+6\right)}{k\left(k-15\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{k^{2}+6k}{k^{2}-15k}.
\frac{4k+23}{k^{2}-15k}-\frac{k+6}{k-15}
Me whakakore tahi te k i te taurunga me te tauraro.
\frac{4k+23}{k\left(k-15\right)}-\frac{k+6}{k-15}
Tauwehea te k^{2}-15k.
\frac{4k+23}{k\left(k-15\right)}-\frac{\left(k+6\right)k}{k\left(k-15\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o k\left(k-15\right) me k-15 ko k\left(k-15\right). Whakareatia \frac{k+6}{k-15} ki te \frac{k}{k}.
\frac{4k+23-\left(k+6\right)k}{k\left(k-15\right)}
Tā te mea he rite te tauraro o \frac{4k+23}{k\left(k-15\right)} me \frac{\left(k+6\right)k}{k\left(k-15\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{4k+23-k^{2}-6k}{k\left(k-15\right)}
Mahia ngā whakarea i roto o 4k+23-\left(k+6\right)k.
\frac{-2k+23-k^{2}}{k\left(k-15\right)}
Whakakotahitia ngā kupu rite i 4k+23-k^{2}-6k.
\frac{-2k+23-k^{2}}{k^{2}-15k}
Whakarohaina te k\left(k-15\right).
\frac{4k+23}{k^{2}-15k}-\frac{k\left(k+6\right)}{k\left(k-15\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{k^{2}+6k}{k^{2}-15k}.
\frac{4k+23}{k^{2}-15k}-\frac{k+6}{k-15}
Me whakakore tahi te k i te taurunga me te tauraro.
\frac{4k+23}{k\left(k-15\right)}-\frac{k+6}{k-15}
Tauwehea te k^{2}-15k.
\frac{4k+23}{k\left(k-15\right)}-\frac{\left(k+6\right)k}{k\left(k-15\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o k\left(k-15\right) me k-15 ko k\left(k-15\right). Whakareatia \frac{k+6}{k-15} ki te \frac{k}{k}.
\frac{4k+23-\left(k+6\right)k}{k\left(k-15\right)}
Tā te mea he rite te tauraro o \frac{4k+23}{k\left(k-15\right)} me \frac{\left(k+6\right)k}{k\left(k-15\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{4k+23-k^{2}-6k}{k\left(k-15\right)}
Mahia ngā whakarea i roto o 4k+23-\left(k+6\right)k.
\frac{-2k+23-k^{2}}{k\left(k-15\right)}
Whakakotahitia ngā kupu rite i 4k+23-k^{2}-6k.
\frac{-2k+23-k^{2}}{k^{2}-15k}
Whakarohaina te k\left(k-15\right).