Aromātai
\frac{23-2k-k^{2}}{k\left(k-15\right)}
Whakaroha
\frac{23-2k-k^{2}}{k\left(k-15\right)}
Tohaina
Kua tāruatia ki te papatopenga
\frac{4k+23}{k^{2}-15k}-\frac{k\left(k+6\right)}{k\left(k-15\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{k^{2}+6k}{k^{2}-15k}.
\frac{4k+23}{k^{2}-15k}-\frac{k+6}{k-15}
Me whakakore tahi te k i te taurunga me te tauraro.
\frac{4k+23}{k\left(k-15\right)}-\frac{k+6}{k-15}
Tauwehea te k^{2}-15k.
\frac{4k+23}{k\left(k-15\right)}-\frac{\left(k+6\right)k}{k\left(k-15\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o k\left(k-15\right) me k-15 ko k\left(k-15\right). Whakareatia \frac{k+6}{k-15} ki te \frac{k}{k}.
\frac{4k+23-\left(k+6\right)k}{k\left(k-15\right)}
Tā te mea he rite te tauraro o \frac{4k+23}{k\left(k-15\right)} me \frac{\left(k+6\right)k}{k\left(k-15\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{4k+23-k^{2}-6k}{k\left(k-15\right)}
Mahia ngā whakarea i roto o 4k+23-\left(k+6\right)k.
\frac{-2k+23-k^{2}}{k\left(k-15\right)}
Whakakotahitia ngā kupu rite i 4k+23-k^{2}-6k.
\frac{-2k+23-k^{2}}{k^{2}-15k}
Whakarohaina te k\left(k-15\right).
\frac{4k+23}{k^{2}-15k}-\frac{k\left(k+6\right)}{k\left(k-15\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{k^{2}+6k}{k^{2}-15k}.
\frac{4k+23}{k^{2}-15k}-\frac{k+6}{k-15}
Me whakakore tahi te k i te taurunga me te tauraro.
\frac{4k+23}{k\left(k-15\right)}-\frac{k+6}{k-15}
Tauwehea te k^{2}-15k.
\frac{4k+23}{k\left(k-15\right)}-\frac{\left(k+6\right)k}{k\left(k-15\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o k\left(k-15\right) me k-15 ko k\left(k-15\right). Whakareatia \frac{k+6}{k-15} ki te \frac{k}{k}.
\frac{4k+23-\left(k+6\right)k}{k\left(k-15\right)}
Tā te mea he rite te tauraro o \frac{4k+23}{k\left(k-15\right)} me \frac{\left(k+6\right)k}{k\left(k-15\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{4k+23-k^{2}-6k}{k\left(k-15\right)}
Mahia ngā whakarea i roto o 4k+23-\left(k+6\right)k.
\frac{-2k+23-k^{2}}{k\left(k-15\right)}
Whakakotahitia ngā kupu rite i 4k+23-k^{2}-6k.
\frac{-2k+23-k^{2}}{k^{2}-15k}
Whakarohaina te k\left(k-15\right).
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}