Aromātai
\frac{16}{17}-\frac{4}{17}i\approx 0.941176471-0.235294118i
Wāhi Tūturu
\frac{16}{17} = 0.9411764705882353
Tohaina
Kua tāruatia ki te papatopenga
\frac{4i\left(-1-4i\right)}{\left(-1+4i\right)\left(-1-4i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, -1-4i.
\frac{4i\left(-1-4i\right)}{\left(-1\right)^{2}-4^{2}i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4i\left(-1-4i\right)}{17}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{4i\left(-1\right)+4\left(-4\right)i^{2}}{17}
Whakareatia 4i ki te -1-4i.
\frac{4i\left(-1\right)+4\left(-4\right)\left(-1\right)}{17}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{16-4i}{17}
Mahia ngā whakarea i roto o 4i\left(-1\right)+4\left(-4\right)\left(-1\right). Whakaraupapatia anō ngā kīanga tau.
\frac{16}{17}-\frac{4}{17}i
Whakawehea te 16-4i ki te 17, kia riro ko \frac{16}{17}-\frac{4}{17}i.
Re(\frac{4i\left(-1-4i\right)}{\left(-1+4i\right)\left(-1-4i\right)})
Me whakarea te taurunga me te tauraro o \frac{4i}{-1+4i} ki te haumi hiato o te tauraro, -1-4i.
Re(\frac{4i\left(-1-4i\right)}{\left(-1\right)^{2}-4^{2}i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{4i\left(-1-4i\right)}{17})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{4i\left(-1\right)+4\left(-4\right)i^{2}}{17})
Whakareatia 4i ki te -1-4i.
Re(\frac{4i\left(-1\right)+4\left(-4\right)\left(-1\right)}{17})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{16-4i}{17})
Mahia ngā whakarea i roto o 4i\left(-1\right)+4\left(-4\right)\left(-1\right). Whakaraupapatia anō ngā kīanga tau.
Re(\frac{16}{17}-\frac{4}{17}i)
Whakawehea te 16-4i ki te 17, kia riro ko \frac{16}{17}-\frac{4}{17}i.
\frac{16}{17}
Ko te wāhi tūturu o \frac{16}{17}-\frac{4}{17}i ko \frac{16}{17}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}