Tīpoka ki ngā ihirangi matua
Kimi Pārōnaki e ai ki c
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(16c^{2}-9\right)\frac{\mathrm{d}}{\mathrm{d}c}(4c^{1})-4c^{1}\frac{\mathrm{d}}{\mathrm{d}c}(16c^{2}-9)}{\left(16c^{2}-9\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(16c^{2}-9\right)\times 4c^{1-1}-4c^{1}\times 2\times 16c^{2-1}}{\left(16c^{2}-9\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(16c^{2}-9\right)\times 4c^{0}-4c^{1}\times 32c^{1}}{\left(16c^{2}-9\right)^{2}}
Mahia ngā tātaitanga.
\frac{16c^{2}\times 4c^{0}-9\times 4c^{0}-4c^{1}\times 32c^{1}}{\left(16c^{2}-9\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{16\times 4c^{2}-9\times 4c^{0}-4\times 32c^{1+1}}{\left(16c^{2}-9\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{64c^{2}-36c^{0}-128c^{2}}{\left(16c^{2}-9\right)^{2}}
Mahia ngā tātaitanga.
\frac{\left(64-128\right)c^{2}-36c^{0}}{\left(16c^{2}-9\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-64c^{2}-36c^{0}}{\left(16c^{2}-9\right)^{2}}
Tango 128 mai i 64.
\frac{4\left(-16c^{2}-9c^{0}\right)}{\left(16c^{2}-9\right)^{2}}
Tauwehea te 4.
\frac{4\left(-16c^{2}-9\right)}{\left(16c^{2}-9\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.