Whakaoti mō a
a=3
Tohaina
Kua tāruatia ki te papatopenga
4a^{2}-9=9\left(2a-3\right)
Tē taea kia ōrite te tāupe a ki \frac{3}{2} nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 2a-3.
4a^{2}-9=18a-27
Whakamahia te āhuatanga tohatoha hei whakarea te 9 ki te 2a-3.
4a^{2}-9-18a=-27
Tangohia te 18a mai i ngā taha e rua.
4a^{2}-9-18a+27=0
Me tāpiri te 27 ki ngā taha e rua.
4a^{2}+18-18a=0
Tāpirihia te -9 ki te 27, ka 18.
2a^{2}+9-9a=0
Whakawehea ngā taha e rua ki te 2.
2a^{2}-9a+9=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-9 ab=2\times 9=18
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 2a^{2}+aa+ba+9. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-18 -2,-9 -3,-6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 18.
-1-18=-19 -2-9=-11 -3-6=-9
Tātaihia te tapeke mō ia takirua.
a=-6 b=-3
Ko te otinga te takirua ka hoatu i te tapeke -9.
\left(2a^{2}-6a\right)+\left(-3a+9\right)
Tuhia anō te 2a^{2}-9a+9 hei \left(2a^{2}-6a\right)+\left(-3a+9\right).
2a\left(a-3\right)-3\left(a-3\right)
Tauwehea te 2a i te tuatahi me te -3 i te rōpū tuarua.
\left(a-3\right)\left(2a-3\right)
Whakatauwehea atu te kīanga pātahi a-3 mā te whakamahi i te āhuatanga tātai tohatoha.
a=3 a=\frac{3}{2}
Hei kimi otinga whārite, me whakaoti te a-3=0 me te 2a-3=0.
a=3
Tē taea kia ōrite te tāupe a ki \frac{3}{2}.
4a^{2}-9=9\left(2a-3\right)
Tē taea kia ōrite te tāupe a ki \frac{3}{2} nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 2a-3.
4a^{2}-9=18a-27
Whakamahia te āhuatanga tohatoha hei whakarea te 9 ki te 2a-3.
4a^{2}-9-18a=-27
Tangohia te 18a mai i ngā taha e rua.
4a^{2}-9-18a+27=0
Me tāpiri te 27 ki ngā taha e rua.
4a^{2}+18-18a=0
Tāpirihia te -9 ki te 27, ka 18.
4a^{2}-18a+18=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 4\times 18}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, -18 mō b, me 18 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-18\right)±\sqrt{324-4\times 4\times 18}}{2\times 4}
Pūrua -18.
a=\frac{-\left(-18\right)±\sqrt{324-16\times 18}}{2\times 4}
Whakareatia -4 ki te 4.
a=\frac{-\left(-18\right)±\sqrt{324-288}}{2\times 4}
Whakareatia -16 ki te 18.
a=\frac{-\left(-18\right)±\sqrt{36}}{2\times 4}
Tāpiri 324 ki te -288.
a=\frac{-\left(-18\right)±6}{2\times 4}
Tuhia te pūtakerua o te 36.
a=\frac{18±6}{2\times 4}
Ko te tauaro o -18 ko 18.
a=\frac{18±6}{8}
Whakareatia 2 ki te 4.
a=\frac{24}{8}
Nā, me whakaoti te whārite a=\frac{18±6}{8} ina he tāpiri te ±. Tāpiri 18 ki te 6.
a=3
Whakawehe 24 ki te 8.
a=\frac{12}{8}
Nā, me whakaoti te whārite a=\frac{18±6}{8} ina he tango te ±. Tango 6 mai i 18.
a=\frac{3}{2}
Whakahekea te hautanga \frac{12}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
a=3 a=\frac{3}{2}
Kua oti te whārite te whakatau.
a=3
Tē taea kia ōrite te tāupe a ki \frac{3}{2}.
4a^{2}-9=9\left(2a-3\right)
Tē taea kia ōrite te tāupe a ki \frac{3}{2} nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 2a-3.
4a^{2}-9=18a-27
Whakamahia te āhuatanga tohatoha hei whakarea te 9 ki te 2a-3.
4a^{2}-9-18a=-27
Tangohia te 18a mai i ngā taha e rua.
4a^{2}-18a=-27+9
Me tāpiri te 9 ki ngā taha e rua.
4a^{2}-18a=-18
Tāpirihia te -27 ki te 9, ka -18.
\frac{4a^{2}-18a}{4}=-\frac{18}{4}
Whakawehea ngā taha e rua ki te 4.
a^{2}+\left(-\frac{18}{4}\right)a=-\frac{18}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
a^{2}-\frac{9}{2}a=-\frac{18}{4}
Whakahekea te hautanga \frac{-18}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
a^{2}-\frac{9}{2}a=-\frac{9}{2}
Whakahekea te hautanga \frac{-18}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
a^{2}-\frac{9}{2}a+\left(-\frac{9}{4}\right)^{2}=-\frac{9}{2}+\left(-\frac{9}{4}\right)^{2}
Whakawehea te -\frac{9}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{9}{4}. Nā, tāpiria te pūrua o te -\frac{9}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
a^{2}-\frac{9}{2}a+\frac{81}{16}=-\frac{9}{2}+\frac{81}{16}
Pūruatia -\frac{9}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
a^{2}-\frac{9}{2}a+\frac{81}{16}=\frac{9}{16}
Tāpiri -\frac{9}{2} ki te \frac{81}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(a-\frac{9}{4}\right)^{2}=\frac{9}{16}
Tauwehea a^{2}-\frac{9}{2}a+\frac{81}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{9}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
a-\frac{9}{4}=\frac{3}{4} a-\frac{9}{4}=-\frac{3}{4}
Whakarūnātia.
a=3 a=\frac{3}{2}
Me tāpiri \frac{9}{4} ki ngā taha e rua o te whārite.
a=3
Tē taea kia ōrite te tāupe a ki \frac{3}{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}