Whakaoti mō a
a=\frac{\sqrt{908193}-949}{4}\approx 0.997901355
a=\frac{-\sqrt{908193}-949}{4}\approx -475.497901355
Tohaina
Kua tāruatia ki te papatopenga
4a^{2}=1898\left(-a+1\right)
Tē taea kia ōrite te tāupe a ki 1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te -a+1.
4a^{2}=-1898a+1898
Whakamahia te āhuatanga tohatoha hei whakarea te 1898 ki te -a+1.
4a^{2}+1898a=1898
Me tāpiri te 1898a ki ngā taha e rua.
4a^{2}+1898a-1898=0
Tangohia te 1898 mai i ngā taha e rua.
a=\frac{-1898±\sqrt{1898^{2}-4\times 4\left(-1898\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 1898 mō b, me -1898 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-1898±\sqrt{3602404-4\times 4\left(-1898\right)}}{2\times 4}
Pūrua 1898.
a=\frac{-1898±\sqrt{3602404-16\left(-1898\right)}}{2\times 4}
Whakareatia -4 ki te 4.
a=\frac{-1898±\sqrt{3602404+30368}}{2\times 4}
Whakareatia -16 ki te -1898.
a=\frac{-1898±\sqrt{3632772}}{2\times 4}
Tāpiri 3602404 ki te 30368.
a=\frac{-1898±2\sqrt{908193}}{2\times 4}
Tuhia te pūtakerua o te 3632772.
a=\frac{-1898±2\sqrt{908193}}{8}
Whakareatia 2 ki te 4.
a=\frac{2\sqrt{908193}-1898}{8}
Nā, me whakaoti te whārite a=\frac{-1898±2\sqrt{908193}}{8} ina he tāpiri te ±. Tāpiri -1898 ki te 2\sqrt{908193}.
a=\frac{\sqrt{908193}-949}{4}
Whakawehe -1898+2\sqrt{908193} ki te 8.
a=\frac{-2\sqrt{908193}-1898}{8}
Nā, me whakaoti te whārite a=\frac{-1898±2\sqrt{908193}}{8} ina he tango te ±. Tango 2\sqrt{908193} mai i -1898.
a=\frac{-\sqrt{908193}-949}{4}
Whakawehe -1898-2\sqrt{908193} ki te 8.
a=\frac{\sqrt{908193}-949}{4} a=\frac{-\sqrt{908193}-949}{4}
Kua oti te whārite te whakatau.
4a^{2}=1898\left(-a+1\right)
Tē taea kia ōrite te tāupe a ki 1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te -a+1.
4a^{2}=-1898a+1898
Whakamahia te āhuatanga tohatoha hei whakarea te 1898 ki te -a+1.
4a^{2}+1898a=1898
Me tāpiri te 1898a ki ngā taha e rua.
\frac{4a^{2}+1898a}{4}=\frac{1898}{4}
Whakawehea ngā taha e rua ki te 4.
a^{2}+\frac{1898}{4}a=\frac{1898}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
a^{2}+\frac{949}{2}a=\frac{1898}{4}
Whakahekea te hautanga \frac{1898}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
a^{2}+\frac{949}{2}a=\frac{949}{2}
Whakahekea te hautanga \frac{1898}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
a^{2}+\frac{949}{2}a+\left(\frac{949}{4}\right)^{2}=\frac{949}{2}+\left(\frac{949}{4}\right)^{2}
Whakawehea te \frac{949}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{949}{4}. Nā, tāpiria te pūrua o te \frac{949}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
a^{2}+\frac{949}{2}a+\frac{900601}{16}=\frac{949}{2}+\frac{900601}{16}
Pūruatia \frac{949}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
a^{2}+\frac{949}{2}a+\frac{900601}{16}=\frac{908193}{16}
Tāpiri \frac{949}{2} ki te \frac{900601}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(a+\frac{949}{4}\right)^{2}=\frac{908193}{16}
Tauwehea a^{2}+\frac{949}{2}a+\frac{900601}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{949}{4}\right)^{2}}=\sqrt{\frac{908193}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
a+\frac{949}{4}=\frac{\sqrt{908193}}{4} a+\frac{949}{4}=-\frac{\sqrt{908193}}{4}
Whakarūnātia.
a=\frac{\sqrt{908193}-949}{4} a=\frac{-\sqrt{908193}-949}{4}
Me tango \frac{949}{4} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}