Whakaoti mō x
x=\frac{21-3z}{5}
Whakaoti mō z
z=-\frac{5x}{3}+7
Tohaina
Kua tāruatia ki te papatopenga
3\left(4-z\right)-\left(x-3\right)=2\left(2x-3\right)
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,6,3.
12-3z-\left(x-3\right)=2\left(2x-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 4-z.
12-3z-x+3=2\left(2x-3\right)
Hei kimi i te tauaro o x-3, kimihia te tauaro o ia taurangi.
15-3z-x=2\left(2x-3\right)
Tāpirihia te 12 ki te 3, ka 15.
15-3z-x=4x-6
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 2x-3.
15-3z-x-4x=-6
Tangohia te 4x mai i ngā taha e rua.
15-3z-5x=-6
Pahekotia te -x me -4x, ka -5x.
-3z-5x=-6-15
Tangohia te 15 mai i ngā taha e rua.
-3z-5x=-21
Tangohia te 15 i te -6, ka -21.
-5x=-21+3z
Me tāpiri te 3z ki ngā taha e rua.
-5x=3z-21
He hanga arowhānui tō te whārite.
\frac{-5x}{-5}=\frac{3z-21}{-5}
Whakawehea ngā taha e rua ki te -5.
x=\frac{3z-21}{-5}
Mā te whakawehe ki te -5 ka wetekia te whakareanga ki te -5.
x=\frac{21-3z}{5}
Whakawehe -21+3z ki te -5.
3\left(4-z\right)-\left(x-3\right)=2\left(2x-3\right)
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,6,3.
12-3z-\left(x-3\right)=2\left(2x-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 4-z.
12-3z-x+3=2\left(2x-3\right)
Hei kimi i te tauaro o x-3, kimihia te tauaro o ia taurangi.
15-3z-x=2\left(2x-3\right)
Tāpirihia te 12 ki te 3, ka 15.
15-3z-x=4x-6
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 2x-3.
-3z-x=4x-6-15
Tangohia te 15 mai i ngā taha e rua.
-3z-x=4x-21
Tangohia te 15 i te -6, ka -21.
-3z=4x-21+x
Me tāpiri te x ki ngā taha e rua.
-3z=5x-21
Pahekotia te 4x me x, ka 5x.
\frac{-3z}{-3}=\frac{5x-21}{-3}
Whakawehea ngā taha e rua ki te -3.
z=\frac{5x-21}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
z=-\frac{5x}{3}+7
Whakawehe 5x-21 ki te -3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}