Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Whakaoti mō z
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3\left(4-z\right)-\left(x-3\right)=2\left(2x-3\right)
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,6,3.
12-3z-\left(x-3\right)=2\left(2x-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 4-z.
12-3z-x+3=2\left(2x-3\right)
Hei kimi i te tauaro o x-3, kimihia te tauaro o ia taurangi.
15-3z-x=2\left(2x-3\right)
Tāpirihia te 12 ki te 3, ka 15.
15-3z-x=4x-6
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 2x-3.
15-3z-x-4x=-6
Tangohia te 4x mai i ngā taha e rua.
15-3z-5x=-6
Pahekotia te -x me -4x, ka -5x.
-3z-5x=-6-15
Tangohia te 15 mai i ngā taha e rua.
-3z-5x=-21
Tangohia te 15 i te -6, ka -21.
-5x=-21+3z
Me tāpiri te 3z ki ngā taha e rua.
-5x=3z-21
He hanga arowhānui tō te whārite.
\frac{-5x}{-5}=\frac{3z-21}{-5}
Whakawehea ngā taha e rua ki te -5.
x=\frac{3z-21}{-5}
Mā te whakawehe ki te -5 ka wetekia te whakareanga ki te -5.
x=\frac{21-3z}{5}
Whakawehe -21+3z ki te -5.
3\left(4-z\right)-\left(x-3\right)=2\left(2x-3\right)
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,6,3.
12-3z-\left(x-3\right)=2\left(2x-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 4-z.
12-3z-x+3=2\left(2x-3\right)
Hei kimi i te tauaro o x-3, kimihia te tauaro o ia taurangi.
15-3z-x=2\left(2x-3\right)
Tāpirihia te 12 ki te 3, ka 15.
15-3z-x=4x-6
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 2x-3.
-3z-x=4x-6-15
Tangohia te 15 mai i ngā taha e rua.
-3z-x=4x-21
Tangohia te 15 i te -6, ka -21.
-3z=4x-21+x
Me tāpiri te x ki ngā taha e rua.
-3z=5x-21
Pahekotia te 4x me x, ka 5x.
\frac{-3z}{-3}=\frac{5x-21}{-3}
Whakawehea ngā taha e rua ki te -3.
z=\frac{5x-21}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
z=-\frac{5x}{3}+7
Whakawehe 5x-21 ki te -3.