Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{4-p}{\left(p-6\right)\left(-p-6\right)}+\frac{p+3}{p-6}
Tauwehea te 36-p^{2}.
\frac{4-p}{\left(p-6\right)\left(-p-6\right)}+\frac{\left(p+3\right)\left(-p-6\right)}{\left(p-6\right)\left(-p-6\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(p-6\right)\left(-p-6\right) me p-6 ko \left(p-6\right)\left(-p-6\right). Whakareatia \frac{p+3}{p-6} ki te \frac{-p-6}{-p-6}.
\frac{4-p+\left(p+3\right)\left(-p-6\right)}{\left(p-6\right)\left(-p-6\right)}
Tā te mea he rite te tauraro o \frac{4-p}{\left(p-6\right)\left(-p-6\right)} me \frac{\left(p+3\right)\left(-p-6\right)}{\left(p-6\right)\left(-p-6\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{4-p-p^{2}-6p-3p-18}{\left(p-6\right)\left(-p-6\right)}
Mahia ngā whakarea i roto o 4-p+\left(p+3\right)\left(-p-6\right).
\frac{-14-10p-p^{2}}{\left(p-6\right)\left(-p-6\right)}
Whakakotahitia ngā kupu rite i 4-p-p^{2}-6p-3p-18.
\frac{-14-10p-p^{2}}{-p^{2}+36}
Whakarohaina te \left(p-6\right)\left(-p-6\right).
\frac{4-p}{\left(p-6\right)\left(-p-6\right)}+\frac{p+3}{p-6}
Tauwehea te 36-p^{2}.
\frac{4-p}{\left(p-6\right)\left(-p-6\right)}+\frac{\left(p+3\right)\left(-p-6\right)}{\left(p-6\right)\left(-p-6\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(p-6\right)\left(-p-6\right) me p-6 ko \left(p-6\right)\left(-p-6\right). Whakareatia \frac{p+3}{p-6} ki te \frac{-p-6}{-p-6}.
\frac{4-p+\left(p+3\right)\left(-p-6\right)}{\left(p-6\right)\left(-p-6\right)}
Tā te mea he rite te tauraro o \frac{4-p}{\left(p-6\right)\left(-p-6\right)} me \frac{\left(p+3\right)\left(-p-6\right)}{\left(p-6\right)\left(-p-6\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{4-p-p^{2}-6p-3p-18}{\left(p-6\right)\left(-p-6\right)}
Mahia ngā whakarea i roto o 4-p+\left(p+3\right)\left(-p-6\right).
\frac{-14-10p-p^{2}}{\left(p-6\right)\left(-p-6\right)}
Whakakotahitia ngā kupu rite i 4-p-p^{2}-6p-3p-18.
\frac{-14-10p-p^{2}}{-p^{2}+36}
Whakarohaina te \left(p-6\right)\left(-p-6\right).