Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Wāhi Tūturu
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(4-5i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 2+i.
\frac{\left(4-5i\right)\left(2+i\right)}{2^{2}-i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4-5i\right)\left(2+i\right)}{5}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{4\times 2+4i-5i\times 2-5i^{2}}{5}
Me whakarea ngā tau matatini 4-5i me 2+i pēnā i te whakarea huarua.
\frac{4\times 2+4i-5i\times 2-5\left(-1\right)}{5}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{8+4i-10i+5}{5}
Mahia ngā whakarea i roto o 4\times 2+4i-5i\times 2-5\left(-1\right).
\frac{8+5+\left(4-10\right)i}{5}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 8+4i-10i+5.
\frac{13-6i}{5}
Mahia ngā tāpiri i roto o 8+5+\left(4-10\right)i.
\frac{13}{5}-\frac{6}{5}i
Whakawehea te 13-6i ki te 5, kia riro ko \frac{13}{5}-\frac{6}{5}i.
Re(\frac{\left(4-5i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)})
Me whakarea te taurunga me te tauraro o \frac{4-5i}{2-i} ki te haumi hiato o te tauraro, 2+i.
Re(\frac{\left(4-5i\right)\left(2+i\right)}{2^{2}-i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(4-5i\right)\left(2+i\right)}{5})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{4\times 2+4i-5i\times 2-5i^{2}}{5})
Me whakarea ngā tau matatini 4-5i me 2+i pēnā i te whakarea huarua.
Re(\frac{4\times 2+4i-5i\times 2-5\left(-1\right)}{5})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{8+4i-10i+5}{5})
Mahia ngā whakarea i roto o 4\times 2+4i-5i\times 2-5\left(-1\right).
Re(\frac{8+5+\left(4-10\right)i}{5})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 8+4i-10i+5.
Re(\frac{13-6i}{5})
Mahia ngā tāpiri i roto o 8+5+\left(4-10\right)i.
Re(\frac{13}{5}-\frac{6}{5}i)
Whakawehea te 13-6i ki te 5, kia riro ko \frac{13}{5}-\frac{6}{5}i.
\frac{13}{5}
Ko te wāhi tūturu o \frac{13}{5}-\frac{6}{5}i ko \frac{13}{5}.